Isoperimetric control of the Steklov spectrum

Let N be a complete Riemannian manifold of dimension n+1 whose Riemannian metric g is conformally equivalent to a metric with non-negative Ricci curvature. The normalized Steklov eigenvalues of a bounded domain in N are bounded above in terms of the isoperimetric ratio of the domain. Consequently, the normalized Steklov eigenvalues of a bounded domain in Euclidean space, hyperbolic space or a standard hemisphere are uniformly bounded above. On a compact surface with boundary, the normalized Steklov eigenvalues are uniformly bounded above in terms of the genus. We also obtain a relationship between the Steklov eigenvalues of a domain and the eigenvalues of the Laplace-Beltrami operator on its bounding hypersurface.

[1]  José F. Escobar A Comparison Theorem for the First Non-zero Steklov Eigenvalue☆ , 2000 .

[2]  C. Xia Rigidity of compact manifolds with boundary and nonnegative Ricci curvature , 1997 .

[3]  R. Gunning Lectures on Riemann Surfaces: Jacobi Varieties , 1966 .

[4]  J. Dodziuk,et al.  RIEMANNIAN METRICS WITH LARGE Xx , 2010 .

[5]  C. Xia,et al.  Sharp bounds for the first non-zero Stekloff eigenvalues , 2009 .

[6]  Isoperimetric control of the spectrum of a compact hypersurface , 2010, 1007.0826.

[7]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[8]  Menahem Schiffer,et al.  Some inequalities for Stekloff eigenvalues , 1974 .

[9]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[10]  Nicholas J. Korevaar Upper bounds for eigenvalues of conformal metrics , 1993 .

[11]  Otto Forster,et al.  Lectures on Riemann Surfaces , 1999 .

[12]  Friedemann Brock,et al.  An Isoperimetric Inequality for Eigenvalues of the Stekloff Problem , 2001 .

[13]  Richard Schoen,et al.  The first Steklov eigenvalue, conformal geometry, and minimal surfaces , 2009, 0912.5392.

[14]  L. Payne Some Isoperimetric Inequalities for Harmonic Functions , 1970 .

[15]  B. Colbois,et al.  Bounding the eigenvalues of the Laplace–Beltrami operator on compact submanifolds , 2009, 0909.5346.

[16]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[17]  W. Stekloff,et al.  Sur les problèmes fondamentaux de la physique mathématique , 1902 .

[18]  Matti Lassas,et al.  The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary , 2003 .

[19]  S. Shamma Asymptotic Behavior of Stekloff Eigenvalues and Eigenfunctions , 1971 .

[20]  J. Dodziuk,et al.  Riemannian metrics with large , 1994 .

[21]  Michael E. Taylor,et al.  Partial Differential Equations II , 1996 .

[22]  Asma Hassannezhad Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem , 2011 .

[23]  D. Fox,et al.  Sloshing frequencies , 1983 .

[24]  I. Chavel,et al.  Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives , 2001 .

[25]  Nikolay D. Kopachevsky,et al.  Operator Approach to Linear Problems of Hydrodynamics , 2012 .

[26]  I. Polterovich,et al.  On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues , 2008, 0808.2968.

[27]  R. Osserman The isoperimetric inequality , 1978 .

[28]  José F. Escobar The Geometry of the First Non-zero Stekloff Eigenvalue , 1997 .

[29]  G. Kokarev Variational aspects of Laplace eigenvalues on Riemannian surfaces , 2011, 1103.2448.

[30]  Iosif Polterovich,et al.  Shape optimization for low Neumann and Steklov eigenvalues , 2008, 0811.2617.

[31]  José F. Escobar An Isoperimetric Inequality and the First Steklov Eigenvalue , 1999 .

[32]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[33]  B. Colbois,et al.  Extremal Eigenvalues of the Laplacian in a Conformal Class of Metrics: The `Conformal Spectrum' , 2003, math/0409316.

[34]  Robert Weinstock,et al.  Inequalities for a Classical Eigenvalue Problem , 1954 .

[35]  S. Yau,et al.  Eigenvalues of elliptic operators and geometric applications , 2004 .

[36]  S. Hassi,et al.  Oper. Theory Adv. Appl. , 2006 .

[37]  C. Croke,et al.  Some isoperimetric inequalities and eigenvalue estimates , 1980 .