Isoperimetric control of the Steklov spectrum
暂无分享,去创建一个
[1] José F. Escobar. A Comparison Theorem for the First Non-zero Steklov Eigenvalue☆ , 2000 .
[2] C. Xia. Rigidity of compact manifolds with boundary and nonnegative Ricci curvature , 1997 .
[3] R. Gunning. Lectures on Riemann Surfaces: Jacobi Varieties , 1966 .
[4] J. Dodziuk,et al. RIEMANNIAN METRICS WITH LARGE Xx , 2010 .
[5] C. Xia,et al. Sharp bounds for the first non-zero Stekloff eigenvalues , 2009 .
[6] Isoperimetric control of the spectrum of a compact hypersurface , 2010, 1007.0826.
[7] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[8] Menahem Schiffer,et al. Some inequalities for Stekloff eigenvalues , 1974 .
[9] A. Calderón,et al. On an inverse boundary value problem , 2006 .
[10] Nicholas J. Korevaar. Upper bounds for eigenvalues of conformal metrics , 1993 .
[11] Otto Forster,et al. Lectures on Riemann Surfaces , 1999 .
[12] Friedemann Brock,et al. An Isoperimetric Inequality for Eigenvalues of the Stekloff Problem , 2001 .
[13] Richard Schoen,et al. The first Steklov eigenvalue, conformal geometry, and minimal surfaces , 2009, 0912.5392.
[14] L. Payne. Some Isoperimetric Inequalities for Harmonic Functions , 1970 .
[15] B. Colbois,et al. Bounding the eigenvalues of the Laplace–Beltrami operator on compact submanifolds , 2009, 0909.5346.
[16] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[17] W. Stekloff,et al. Sur les problèmes fondamentaux de la physique mathématique , 1902 .
[18] Matti Lassas,et al. The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary , 2003 .
[19] S. Shamma. Asymptotic Behavior of Stekloff Eigenvalues and Eigenfunctions , 1971 .
[20] J. Dodziuk,et al. Riemannian metrics with large , 1994 .
[21] Michael E. Taylor,et al. Partial Differential Equations II , 1996 .
[22] Asma Hassannezhad. Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem , 2011 .
[23] D. Fox,et al. Sloshing frequencies , 1983 .
[24] I. Chavel,et al. Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives , 2001 .
[25] Nikolay D. Kopachevsky,et al. Operator Approach to Linear Problems of Hydrodynamics , 2012 .
[26] I. Polterovich,et al. On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues , 2008, 0808.2968.
[27] R. Osserman. The isoperimetric inequality , 1978 .
[28] José F. Escobar. The Geometry of the First Non-zero Stekloff Eigenvalue , 1997 .
[29] G. Kokarev. Variational aspects of Laplace eigenvalues on Riemannian surfaces , 2011, 1103.2448.
[30] Iosif Polterovich,et al. Shape optimization for low Neumann and Steklov eigenvalues , 2008, 0811.2617.
[31] José F. Escobar. An Isoperimetric Inequality and the First Steklov Eigenvalue , 1999 .
[32] C. Bandle. Isoperimetric inequalities and applications , 1980 .
[33] B. Colbois,et al. Extremal Eigenvalues of the Laplacian in a Conformal Class of Metrics: The `Conformal Spectrum' , 2003, math/0409316.
[34] Robert Weinstock,et al. Inequalities for a Classical Eigenvalue Problem , 1954 .
[35] S. Yau,et al. Eigenvalues of elliptic operators and geometric applications , 2004 .
[36] S. Hassi,et al. Oper. Theory Adv. Appl. , 2006 .
[37] C. Croke,et al. Some isoperimetric inequalities and eigenvalue estimates , 1980 .