Data-Efficient Bayesian Verification of Parametric Markov Chains

Obtaining complete and accurate models for the formal verification of systems is often hard or impossible. We present a data-based verification approach, for properties expressed in a probabilistic logic, that addresses incomplete model knowledge. We obtain experimental data from a system that can be modelled as a parametric Markov chain. We propose a novel verification algorithm to quantify the confidence the underlying system satisfies a given property of interest by using this data. Given a parameterised model of the system, the procedure first generates a feasible set of parameters corresponding to model instances satisfying a given probabilistic property. Simultaneously, we use Bayesian inference to obtain a probability distribution over the model parameter set from data sampled from the underlying system. The results of both steps are combined to compute a confidence the underlying system satisfies the property. The amount of data required is minimised by exploiting partial knowledge of the system. Our approach offers a framework to integrate Bayesian inference and formal verification, and in our experiments our new approach requires one order of magnitude less data than standard statistical model checking to achieve the same confidence.

[1]  David S. Rosenblum,et al.  Nested Reachability Approximation for Discrete-Time Markov Chains with Univariate Parameters , 2014, ATVA.

[2]  Sumit Kumar Jha,et al.  A Counterexample-Guided Approach to Parameter Synthesis for Linear Hybrid Automata , 2008, HSCC.

[3]  Sofie Haesaert,et al.  Data-driven property verification of grey-box systems by bayesian experiment design , 2015, 2015 American Control Conference (ACC).

[4]  Andrea Maggiolo-Schettini,et al.  Parametric probabilistic transition systems for system design and analysis , 2007, Formal Aspects of Computing.

[5]  Lijun Zhang,et al.  Probabilistic reachability for parametric Markov models , 2010, International Journal on Software Tools for Technology Transfer.

[6]  Calin Belta,et al.  Model Checking Genetic Regulatory Networks with Parameter Uncertainty , 2007, HSCC.

[7]  Mahesh Viswanathan,et al.  Statistical Model Checking of Black-Box Probabilistic Systems , 2004, CAV.

[8]  Christel Baier,et al.  Principles of model checking , 2008 .

[9]  Lijun Zhang,et al.  PARAM: A Model Checker for Parametric Markov Models , 2010, CAV.

[10]  Edmund M. Clarke,et al.  Bayesian statistical model checking with application to Stateflow/Simulink verification , 2013, Formal Methods Syst. Des..

[11]  G. Sanguinetti,et al.  Learning and Designing Stochastic Processes from Logical Constraints , 2013, QEST.

[12]  Axel Legay,et al.  Statistical Model Checking: An Overview , 2010, RV.

[13]  Håkan L. S. Younes Probabilistic Verification for "Black-Box" Systems , 2005, CAV.

[14]  Thomas A. Henzinger,et al.  Using HyTech to Synthesize Control Parameters for a Steam Boiler , 1995, Formal Methods for Industrial Applications.

[15]  Conrado Daws Symbolic and Parametric Model Checking of Discrete-Time Markov Chains , 2004, ICTAC.

[16]  Jesse Hoey,et al.  An analytic solution to discrete Bayesian reinforcement learning , 2006, ICML.

[17]  H. D. De Kanter [The philosophy of statistics]. , 1972, Ginecología y Obstetricia de México.

[18]  Axel Legay,et al.  Lightweight Monte Carlo Algorithm for Markov Decision Processes , 2013, ArXiv.

[19]  Annie Cuyt,et al.  Gamma function and related functions , 2008 .

[20]  A Technical Note on the Dirichlet-Multinomial Model , 2012 .

[21]  Yingke Chen,et al.  Active Learning of Markov Decision Processes for System Verification , 2012, 2012 11th International Conference on Machine Learning and Applications.

[22]  Håkan L. S. Younes,et al.  Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling , 2002, CAV.

[23]  Edmund M. Clarke,et al.  Statistical Model Checking for Markov Decision Processes , 2012, 2012 Ninth International Conference on Quantitative Evaluation of Systems.

[24]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[25]  Ezio Bartocci,et al.  Learning Temporal Logical Properties Discriminating ECG models of Cardiac Arrhytmias , 2013, ArXiv.

[26]  Lijun Zhang,et al.  Synthesis for PCTL in Parametric Markov Decision Processes , 2011, NASA Formal Methods.

[27]  Manfred Jaeger,et al.  Learning and Model-Checking Networks of I/O Automata , 2012, ACML.

[28]  Lubos Brim,et al.  Exploring Parameter Space of Stochastic Biochemical Systems Using Quantitative Model Checking , 2013, CAV.

[29]  Joelle Pineau,et al.  A Bayesian Approach for Learning and Planning in Partially Observable Markov Decision Processes , 2011, J. Mach. Learn. Res..

[30]  Marta Z. Kwiatkowska,et al.  The PRISM Benchmark Suite , 2012, 2012 Ninth International Conference on Quantitative Evaluation of Systems.

[31]  Sebastian Junges,et al.  PROPhESY: A PRObabilistic ParamEter SYnthesis Tool , 2015, CAV.

[32]  Ayalvadi Ganesh,et al.  Bayesian inference for Markov chains , 2002, Journal of Applied Probability.