Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients

Efficient spectral-Galerkin algorithms are developed to solve multi-dimensional fractional elliptic equations with variable coefficients in conserved form as well as non-conserved form. These algorithms are extensions of the spectral-Galerkin algorithms for usual elliptic PDEs developed in 24. More precisely, for separable FPDEs, we construct a direct method by using a matrix diagonalization approach, while for non-separable FPDEs, we employ a preconditioned BICGSTAB method with a suitable separable FPDE with constant-coefficients as preconditioner. The cost of these algorithms is of O ( N d + 1 ) flops where d is the space dimension. We derive rigorous weighted error estimates which provide more precise convergence rate for problems with singularities at boundaries. We also present ample numerical results to validate the algorithms and error estimates.

[1]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[2]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[3]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[4]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[5]  Hong Wang,et al.  An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations , 2011, J. Comput. Phys..

[6]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[7]  Hong Wang,et al.  A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..

[8]  George E. Karniadakis,et al.  Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..

[9]  Jie Shen,et al.  Generalized Jacobi functions and their applications to fractional differential equations , 2014, Math. Comput..

[10]  E. Montroll Random walks on lattices , 1969 .

[11]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[12]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[13]  W.Th.F. den Hollander,et al.  Random walks on lattices with points of two colors. II. Some rigorous inequalities for symmetric random walks , 1985 .

[14]  Mark Ainsworth,et al.  A unified Petrov-Galerkin spectral method for fractional PDEs , 2015 .

[15]  Hai-Wei Sun,et al.  Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..

[16]  G. Burton Sobolev Spaces , 2013 .

[17]  D. Benson,et al.  Eulerian derivation of the fractional advection-dispersion equation. , 2001, Journal of contaminant hydrology.

[18]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[21]  Richard Askey,et al.  INTEGRAL REPRESENTATIONS FOR JACOBI POLYNOMIALS AND SOME APPLICATIONS. , 1969 .

[22]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[23]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[24]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[25]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[26]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[27]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[28]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[29]  M. Meerschaert,et al.  Fractional conservation of mass , 2008 .

[30]  George E. Karniadakis,et al.  Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..

[31]  Dale B. Haidvogel,et al.  The Accurate Solution of Poisson's Equation by Expansion in Chebyshev Polynomials , 1979 .

[32]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[33]  John R. Rice,et al.  Direct solution of partial difference equations by tensor product methods , 1964 .

[34]  Bangti Jin,et al.  Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation , 2014, SIAM J. Numer. Anal..

[35]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .