On Kalman-Yakubovich-Popov lemma for stabilizable systems

The Kalman-Yakubovich-Popov (KYP) lemma has been a cornerstone in system theory and network analysis and synthesis. It relates an analytic property of a square transfer matrix in the frequency domain to a set of algebraic equations involving parameters of a minimal realization in the time domain. This note proves that the KYP lemma is also valid for realizations which are stabilizable and observable.

[1]  Louis Weinberg,et al.  Network Analysis and Synthesis , 1962 .

[2]  R. Kálmán LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROL. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Petros A. Ioannou,et al.  Frequency domain conditions for strictly positive real functions , 1987 .

[4]  P. Ioannou,et al.  Strictly positive real matrices and the Lefschetz-Kalman-Yakubovich lemma , 1988 .

[5]  Anders Robertsson,et al.  Stability analysis of adaptive output feedback systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[6]  B. Anderson A SYSTEM THEORY CRITERION FOR POSITIVE REAL MATRICES , 1967 .

[7]  木村 英紀,et al.  Chain-scattering approach to H[∞] control , 1997 .

[8]  Alexander L. Fradkov,et al.  THE FREQUENCY THEOREM (KALMAN-YAKUBOVICH LEMMA) IN CONTROL THEORY , 1996 .

[9]  B. Anderson An algebraic solution to the spectral factorization problem , 1967, IEEE Transactions on Automatic Control.

[10]  Brian D. O. Anderson,et al.  Algebraic Structure of Generalized Positive Real Matrices , 1968 .

[11]  D. Youla,et al.  On the factorization of rational matrices , 1961, IRE Trans. Inf. Theory.

[12]  T. Başar Absolute Stability of Nonlinear Systems of Automatic Control , 2001 .

[13]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[14]  K. Narendra,et al.  Frequency Domain Criteria for Absolute Stability , 1973 .

[15]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[16]  S. Joshi,et al.  Strictly positive real transfer functions revisited , 1990 .

[17]  K. Meyer On the Existence of Lyapunov Function for the Problem of Lur’e , 1965 .

[18]  Thomas Kailath,et al.  Linear Systems , 1980 .