Er3+ laser transition in PbO–PbF2–B2O3 glasses

Results of absorption, emission and fluorescence lifetime measurements (for the 4 I 13/2 → 4 I 15/2 transition) are presented for lead fluoroborate glasses doped with different concentrations of Er 3+ varying from 0.22 x 10 20 ions/cm 3 to 5.96 x 10 20 ions/cm 3 . The calculated Judd-Ofelt parameters are: Ω 2 = (1.2 ± 0.1) × 10 -20 cm 2 , Ω 4 = (0.59 + 0.04) x 10 -20 and Ω 6 = (0.42 ± 0.03) 10 -20 cm 2 . The emission cross-sections are calculated using McCumber and Fuchtbauer-Ladenburg methods. The sample with 2.20 × 10 20 ions/ cm -3 has an emission cross-section with maximum of 0.46 x 10 -20 cm 2 , at 1532 nm, fluorescence effective bandwidth of 66nm and fluorescence lifetime of about 1 ms.

[1]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[2]  Renata Reisfeld,et al.  Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses , 1977 .

[3]  Y. Messaddeq,et al.  Optical transition probabilities and compositional dependence of Judd-Ofelt parameters of Er3+ ions in fluoroindate glass , 1995 .

[4]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .

[5]  Lilia Coronato Courrol,et al.  Lead fluoroborate glass doped with ytterbium , 2002 .

[6]  Lilia Coronato Courrol,et al.  Spectroscopic properties of lead fluoroborate glasses codoped with Er 3+ and Yb 3+ , 2002 .

[7]  Shibin Jiang,et al.  Spectral properties of erbium-doped lead halotellurite glasses for 1.5 μm broadband amplification , 2000 .

[8]  Lilia Coronato Courrol,et al.  Spectroscopic properties of lead fluoroborate glasses doped with ytterbium. , 2001, Optics express.

[9]  Zhenxiang Cheng,et al.  Optical spectroscopy of Yb/Er codoped NaY(WO , 2002 .

[10]  M. Ferraris,et al.  Novel erbium doped PbO and B2O3 based glasses with broad 1.5 μm absorption line width and low refractive index , 2003 .

[11]  K. Rajnak,et al.  Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+ , 1968 .

[12]  P. Thony,et al.  Yb3+–Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm , 2000 .

[13]  Richard Ian Laming,et al.  Absorption and emission cross section of Er/sup 3+/ doped silica fibers , 1991 .

[14]  Lilia Coronato Courrol,et al.  Spectroscopic properties of lead fluoroborate and heavy metal oxide glasses doped with Yb3 , 2002 .

[15]  Stuart D. Jackson,et al.  Erbium 3 /spl mu/m fiber lasers , 2001 .

[16]  T. King,et al.  Spectroscopic and energy-transfer parameters for Er 3+ -doped and Er 3+ , Pr 3+ -codoped GeGaS glasses , 2002 .

[17]  Sylvia Smolorz,et al.  Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses , 1999 .

[18]  Maurizio Ferrari,et al.  Erbium-doped tellurite glasses with high quantum efficiency and broadband stimulated emission cross section at 1.5 μm , 2003 .

[19]  Hefang Hu,et al.  Emission properties of highly doped Er3+ fluoroaluminate glass , 2001 .

[20]  Renata Reisfeld,et al.  Judd-Ofelt parameters and chemical bonding☆ , 1983 .

[21]  M. J. Weber,et al.  Probabilities for Radiative and Nonradiative Decay of Er 3 + in La F 3 , 1967 .