The Molecular Diversity of Dscam Is Functionally Required for Neuronal Wiring Specificity in Drosophila

[1]  R. Sperry CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Ghysen Sensory neurones recognise defined pathways in Drosophila central nervous system , 1978, Nature.

[3]  A. Ghysen The projection of sensory neurons in the central nervous system of Drosophila: choice of the appropriate pathway. , 1980, Developmental biology.

[4]  AC Tose Cell , 1993, Cell.

[5]  John G Flanagan,et al.  Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map , 1995, Cell.

[6]  M. Nieto Molecular Biology of Axon Guidance , 1996, Neuron.

[7]  M. Takeichi,et al.  Roles of cadherins in patterning of the developing brain. , 1997, Developmental neuroscience.

[8]  Masahiko Watanabe,et al.  Diversity Revealed by a Novel Family of Cadherins Expressed in Neurons at a Synaptic Complex , 1998, Neuron.

[9]  R. Axel,et al.  Odorant Receptors Govern the Formation of a Precise Topographic Map , 1998, Cell.

[10]  J G Flanagan,et al.  The ephrins and Eph receptors in neural development. , 1998, Annual review of neuroscience.

[11]  T. Uemura,et al.  The Cadherin Superfamily at the Synapse: More Members, More Missions , 1998, Cell.

[12]  T. Südhof,et al.  Neurexophilin binding to alpha-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. , 1998, The Journal of biological chemistry.

[13]  Á. Acebes,et al.  Single Neuron Mosaics of the Drosophila gigas Mutant Project beyond Normal Targets and Modify Behavior , 1998, The Journal of Neuroscience.

[14]  J. Helden,et al.  The iroquois complex controls the somatotopy of Drosophila notum mechanosensory projections. , 1998, Development.

[15]  T. Maniatis,et al.  A Striking Organization of a Large Family of Human Neural Cadherin-like Cell Adhesion Genes , 1999, Cell.

[16]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[17]  C. Shatz,et al.  Functional requirement for class I MHC in CNS development and plasticity. , 2000, Science.

[18]  J. C. Clemens,et al.  Drosophila Dscam Is an Axon Guidance Receptor Exhibiting Extraordinary Molecular Diversity , 2000, Cell.

[19]  David R. Colman,et al.  Molecules, maps and synapse specificity , 2001, Nature Reviews Neuroscience.

[20]  Masahito Yamagata,et al.  Sidekicks Synaptic Adhesion Molecules that Promote Lamina-Specific Connectivity in the Retina , 2002, Cell.

[21]  D. O'Leary,et al.  EphB Forward Signaling Controls Directional Branch Extension and Arborization Required for Dorsal-Ventral Retinotopic Mapping , 2002, Neuron.

[22]  Persistent larval sensory neurones are required for the normal development of the adult sensory afferent projections in Drosophila. , 2002, Development.

[23]  P. Mombaerts,et al.  Minigenes Impart Odorant Receptor-Specific Axon Guidance in the Olfactory Bulb , 2002, Neuron.

[24]  Christopher T. Zugates,et al.  Drosophila Dscam Is Required for Divergent Segregation of Sister Branches and Suppresses Ectopic Bifurcation of Axons , 2002, Neuron.

[25]  A. B. Huber,et al.  Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. , 2003, Annual review of neuroscience.

[26]  Matthias Landgraf,et al.  Genetic Specification of Axonal Arbors atonal Regulates robo3 to Position Terminal Branches in the Drosophila Nervous System , 2003, Neuron.

[27]  Leslie B. Vosshall,et al.  Axonal Targeting of Olfactory Receptor Neurons in Drosophila Is Controlled by Dscam , 2003, Neuron.

[28]  Mark Daly,et al.  Stochastic yet biased expression of multiple Dscam splice variants by individual cells , 2004, Nature Genetics.

[29]  J. C. Clemens,et al.  Alternative Splicing of Drosophila Dscam Generates Axon Guidance Receptors that Exhibit Isoform-Specific Homophilic Binding , 2004, Cell.

[30]  Jian Wang,et al.  Transmembrane/Juxtamembrane Domain-Dependent Dscam Distribution and Function during Mushroom Body Neuronal Morphogenesis , 2004, Neuron.

[31]  Priscilla Wu,et al.  Ankyrin-Based Subcellular Gradient of Neurofascin, an Immunoglobulin Family Protein, Directs GABAergic Innervation at Purkinje Axon Initial Segment , 2004, Cell.

[32]  P. Mombaerts,et al.  A Contextual Model for Axonal Sorting into Glomeruli in the Mouse Olfactory System , 2004, Cell.

[33]  Carla J. Shatz,et al.  Immune signalling in neural development, synaptic plasticity and disease , 2004, Nature Reviews Neuroscience.

[34]  J. C. Clemens,et al.  Analysis of Dscam Diversity in Regulating Axon Guidance in Drosophila Mushroom Bodies , 2004, Neuron.

[35]  T. Südhof,et al.  A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. , 2005, Neuron.

[36]  B. Graveley,et al.  The iStem, a Long-Range RNA Secondary Structure Element Required for Efficient Exon Inclusion in the Drosophila Dscam Pre-mRNA , 2005, Molecular and Cellular Biology.

[37]  Thomas C. Südhof,et al.  A Splice Code for trans-Synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to α- and β-Neurexins , 2005, Neuron.

[38]  M. Kondo,et al.  Extensive Diversity of Ig-Superfamily Proteins in the Immune System of Insects , 2005, Science.

[39]  A. Nern,et al.  An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Sanes,et al.  Gamma protocadherins are required for synaptic development in the spinal cord. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. C. Clemens,et al.  Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe , 2006, Nature Neuroscience.