A review on vibrating beam-based micro/nano-gyroscopes

A comprehensive review of the modeling approaches used to simulate the behaviors of micro/nano-gyroscopes is presented. The performance and sensitivity of these inertial sensors can be significantly improved through understanding their governing dynamics and exploiting specific phenomena and distinctive features. Such understanding can be developed by solving and analyzing their governing equations and boundary conditions that may comprise a set of highly nonlinear partial differential equations. The operating principle of vibrating beam gyroscopes is described and their main actuation and sensing mechanisms are reviewed and discussed. The multi-fidelity modeling approaches that have been used for the design, performance analysis, and control of vibratory micro/nano-gyroscopes are consolidated and reviewed. The use of these mathematical models has opened doors for the development of new sensing designs with unprecedented sensitivity and extended operating range. To date, extensive research has been conducted on modeling and simulations of micro/nano-gyroscopes. However, several open research topics have not been thoroughly explored yet. These include nanoscale experimentation for model validation, damage/fatigue modeling, and self-powered energy harvesting gyroscope systems. This review presents the current state of the art and highlights promising research directions for continued technological advancement of micro/nano-gyroscopes.

[1]  Jean-Marie Dilhac,et al.  A multifunctional device as both strain sensor and energy harvester for structural health monitoring , 2016, 2016 IEEE SENSORS.

[2]  Nader Jalili,et al.  Ring Microgyroscope Modeling and Performance Evaluation , 2006 .

[3]  M. Shaat,et al.  Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications , 2015 .

[4]  John Ojur Dennis,et al.  MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model , 2015 .

[5]  Prashant N. Kambali,et al.  Capacitance and Force Computation Due to Direct and Fringing Effects in MEMS/NEMS Arrays , 2016, IEEE Sensors Journal.

[6]  Usung Park,et al.  Tactical grade MEMS vibrating ring gyroscope with high shock reliability , 2015 .

[7]  Michael Kraft,et al.  Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs , 2009, Sensors.

[8]  G. M. L. Gladwell,et al.  A variational formulation of damped acousto structural vibration problems , 1966 .

[9]  M. Ahmadian,et al.  The oscillatory behavior, static and dynamic analyses of a micro/nano gyroscope considering geometric nonlinearities and intermolecular forces , 2013 .

[10]  Z. Hou,et al.  An Investigate on Degradation Models of Resonant Frequency and Mechanical Sensitivity for Butterfly Resonator Gyroscope , 2020, Journal of Microelectromechanical Systems.

[11]  K. Larkin,et al.  Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes , 2018 .

[12]  Fengyu Sun,et al.  Research on an Anchor Point Lever Beam Coupling Type Tuning Fork Micro-gyroscope , 2020 .

[13]  F. Ayazi,et al.  A 0.1°/HR bias drift electronically matched tuning fork microgyroscope , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[14]  A. Bazaei,et al.  A Comprehensive Analysis of MEMS Electrothermal Displacement Sensors , 2014, IEEE Sensors Journal.

[15]  Timothy J. Davis,et al.  Single-crystal silicon gyroscope with decoupled drive and sense , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[16]  Rong Zhang,et al.  A Micro-Machined Silicon Vibrating Ring Gyroscope , 2011 .

[17]  Yang Bai,et al.  A Game Changer: A Multifunctional Perovskite Exhibiting Giant Ferroelectricity and Narrow Bandgap with Potential Application in a Truly Monolithic Multienergy Harvester or Sensor , 2017, Advanced materials.

[18]  A. Erturk,et al.  Nanoscale flexoelectric energy harvesting , 2014 .

[19]  Z. Hou,et al.  Failure Analysis and Experimental validation of MEMS Gyro under random Vibration condition , 2019, 2019 Prognostics and System Health Management Conference (PHM-Qingdao).

[20]  Vikrant Bhadbhade,et al.  A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope , 2008 .

[21]  A. Shkel,et al.  Mechanical trimming with focused ion beam for permanent tuning of MEMS dual-mass gyroscope , 2020 .

[22]  Andrei M. Shkel,et al.  Electrostatic compensation of structural imperfections in dynamically amplified dual-mass gyroscope , 2017, 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL).

[23]  Wolfgang Kuehnel,et al.  Modelling of the mechanical behaviour of a differential capacitor acceleration sensor , 1995 .

[24]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[25]  Y. Kagawa,et al.  Three-dimensional finite-element simulation of a piezoelectric vibrator under gyration , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  Sumanta Kumar Karan,et al.  Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based self-powered piezoelectric/wind/acoustic multi-energy harvester with remarkable power density , 2019, Nano Energy.

[27]  M. Ahmadian,et al.  OSCILLATORY BEHAVIOR OF AN ELECTROSTATICALLY ACTUATED MICROCANTILEVER GYROSCOPE , 2013 .

[28]  Masaya Tamura,et al.  High-resolution microgyroscope using vibratory motion adjustment technology , 2001 .

[29]  Chen Zhiyong,et al.  Digital Readout System for Micromachined Gyroscope and Analysis for its Demodulation Algorithm , 2006 .

[30]  Rudra Pratap,et al.  Sensitivity analysis of an in-plane MEMS vibratory gyroscope , 2018 .

[31]  Andrei M. Shkel,et al.  Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering , 2011 .

[32]  N. P. van der Meijs,et al.  VLSI circuit reconstruction from mask topology , 1984, Integr..

[33]  Jong-Hyun Lee,et al.  A laterally driven symmetric micro-resonator for gyroscopic applications , 2000 .

[34]  Weiping Zhang,et al.  Iop Publishing Journal of Micromechanics and Microengineering Vibration Analysis of a Piezoelectric Micromachined Modal Gyroscope (pmmg) , 2022 .

[35]  Xuezhong Wu,et al.  A Tuning Fork Gyroscope with a Polygon-Shaped Vibration Beam , 2019, Micromachines.

[36]  Yan Li,et al.  Frequency measurement study of resonant vibratory gyroscopes , 2012 .

[37]  Ramón José Pérez Menéndez IFOG and IORG Gyros: A Study of Comparative Performance , 2019 .

[38]  S. Shen,et al.  Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity , 2017 .

[39]  On modeling beam-rigid-body microgyroscopes , 2017 .

[40]  S. H. Choa,et al.  Reliability of vacuum packaged MEMS gyroscopes , 2005, Microelectron. Reliab..

[41]  Abdessattar Abdelkefi,et al.  Modeling and Vibration Characteristics of Cracked Nano-Beams Made of Nanocrystalline Materials , 2016 .

[42]  Francesco Aggogeri,et al.  Review on Micromachining Techniques , 2005 .

[43]  S. Bedair,et al.  PZT‐Based Piezoelectric MEMS Technology , 2012 .

[44]  Herbert Shea,et al.  MEMS Reliability , 2010 .

[45]  Francesco Braghin,et al.  Topology optimization of 2D in-plane single mass MEMS gyroscopes , 2020, Structural and Multidisciplinary Optimization.

[46]  N. Lavrik,et al.  Optically read Coriolis vibratory gyroscope based on a silicon tuning fork , 2019, Microsystems & Nanoengineering.

[47]  K. Maenaka,et al.  Novel Solid Micro-Gyroscope , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[48]  Xingling Shao,et al.  Design, Fabrication and Experiment of Double U-Beam MEMS Vibration Ring Gyroscope , 2019, Micromachines.

[49]  M. M. Hasan,et al.  Comparative Study on Finite Element Analysis & System Model Extraction for Non-Resonant 3-DoF Microgyroscope , 2008, 2008 IEEE International Behavioral Modeling and Simulation Workshop.

[50]  Andrei M. Shkel,et al.  MEMS Gyroscope With Concentrated Springs Suspensions Demonstrating Single Digit Frequency Split and Temperature Robustness , 2019, Journal of Microelectromechanical Systems.

[51]  M. Ahmadian,et al.  DYNAMIC PULL-IN INSTABILITY AND VIBRATION ANALYSIS OF A NONLINEAR MICROCANTILEVER GYROSCOPE UNDER STEP VOLTAGE CONSIDERING SQUEEZE FILM DAMPING , 2013 .

[52]  Yi Chen,et al.  Estimation With Threshold Sensing for Gyroscope Calibration Using a Piezoelectric Microstage , 2015, IEEE Transactions on Control Systems Technology.

[54]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[55]  S. Senturia Microsystem Design , 2000 .

[56]  M. Younis MEMS Linear and Nonlinear Statics and Dynamics , 2011 .

[57]  Randolph Rach,et al.  A size-dependent model for instability analysis of paddle-type and double-sided NEMS measurement sensors in the presence of centrifugal force , 2017 .

[58]  Ali H. Nayfeh,et al.  Modeling and performance study of a beam microgyroscope , 2010 .

[60]  Sandeep K. Arya,et al.  Analytical modeling and simulation of a 2-DOF drive and 1-DOF sense gyro-accelerometer , 2013 .

[61]  S. Awan,et al.  Design and Analysis of a High-Gain and Robust Multi-DOF Electro-thermally Actuated MEMS Gyroscope , 2018, Micromachines.

[62]  M. Ahmadian,et al.  EFFECTS OF CASIMIR AND VAN DER WAALS FORCES ON THE PULL-IN INSTABILITY OF THE NONLINEAR MICRO AND NANO-BRIDGE GYROSCOPES , 2014 .

[63]  Yung C. Liang,et al.  Mathematical Modelling on the Quadrature Error of Low-rate Microgyroscope for Aerospace Applications , 2001 .

[64]  R. Toupin Elastic materials with couple-stresses , 1962 .

[65]  S. E. Khadem,et al.  Design and performance analysis of a nanogyroscope based on electrostatic actuation and capacitive sensing , 2013 .

[66]  Sang‐Jae Kim,et al.  Phase inversion enabled energy scavenger: A multifunctional triboelectric nanogenerator as benzene monitoring system , 2019, Sensors and Actuators B: Chemical.

[67]  S. A. Zotov,et al.  Sub-degree-per-hour silicon MEMS rate sensor with 1 million Q-factor , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[68]  Ram Gopal,et al.  Structural design of torsional micro-gyroscope having robust drive and sense modes , 2017 .

[69]  Honglong Chang,et al.  Integrated Behavior Simulation and Verification for a MEMS Vibratory Gyroscope Using Parametric Model Order Reduction , 2010, Journal of Microelectromechanical Systems.

[70]  M. M. Saleem,et al.  Mechanically Amplified 3-DoF Nonresonant Microelectromechanical Systems Gyroscope Fabricated in Low Cost MetalMUMPs Process , 2011 .

[71]  Andrei M. Shkel,et al.  Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing , 2013 .

[72]  A. Hunter,et al.  Nonlinear size dependent analysis and effectiveness of nanocrystalline micro/nanogyroscopes , 2020 .

[73]  Eihab M. Abdel-Rahman,et al.  A parametric study of the nonlinear dynamics and sensitivity of a beam-rigid body microgyroscope , 2017, Commun. Nonlinear Sci. Numer. Simul..

[74]  Gary F. Dargush,et al.  Couple stress theory for solids , 2011 .

[75]  Tayfun Akin,et al.  A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure , 2007 .

[76]  A. Nayfeh,et al.  A novel differential frequency micro-gyroscope , 2015 .

[77]  S. E. Alper,et al.  Quadrature-Error Compensation and Corresponding Effects on the Performance of Fully Decoupled MEMS Gyroscopes , 2012, Journal of Microelectromechanical Systems.

[78]  Mohammad Taghi Ahmadian,et al.  Static deflection and pull-in instability analysis of an electrostatically actuated mirocantilever gyroscope considering geometric nonlinearities , 2013 .

[79]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[80]  Shang Gao,et al.  Recent advances in micro- and nano-machining technologies , 2017 .

[81]  Walter Lang,et al.  A new silicon rate gyroscope , 1999 .

[82]  Kwang-Seok Yun,et al.  Multifunctional Woven Structure Operating as Triboelectric Energy Harvester, Capacitive Tactile Sensor Array, and Piezoresistive Strain Sensor Array , 2017, Sensors.

[83]  R. Cook,et al.  Predicting strength distributions of MEMS structures using flaw size and spatial density , 2019, Microsystems & Nanoengineering.

[84]  Won Seop Hwang,et al.  A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system , 2019, Applied Energy.

[85]  A. Abdelkefi,et al.  Performance analysis of differential-frequency microgyroscopes made of nanocrystalline material , 2017 .

[86]  Shafaat A. Bazaz,et al.  Design, damping estimation and experimental characterization of decoupled 3-DoF robust MEMS gyroscope , 2011 .

[87]  Weizheng Yuan Development and application of high-end aerospace MEMS , 2017 .

[88]  Finite element model-simulation-based characterization of a magnetostrictive gyrosensor , 2010 .

[89]  G. Alici,et al.  Size-dependent performance of microgyroscopes , 2016 .

[90]  J. Bevan Analysis and Testing of Plates with Piezoelectric Sensors and Actuators , 1998 .

[91]  T. Ng,et al.  Contribution of nonlocality to surface elasticity , 2020 .

[92]  Lei Jin,et al.  Design and Mechanical Sensitivity Analysis of a MEMS Tuning Fork Gyroscope with an Anchored Leverage Mechanism , 2019, Sensors.

[93]  S. A. M. Lajimi,et al.  Primary resonance of a beam-rigid body microgyroscope , 2015 .

[94]  Guowei Zhao,et al.  Coupling vibration analysis of rotating three-dimensional cantilever beam , 2017 .

[95]  T. Tsuchiya,et al.  Finite element simulation of piezoelectric vibrator gyroscopes , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[96]  Xudong Yu,et al.  Parametric design of mechanical dither with bimorph piezoelectric actuator for ring laser gyroscope , 2015 .

[97]  N. Jalili,et al.  Theoretical and Experimental Analysis of Coupled Flexural-Torsional Vibrations of Rotating Beams , 2018, Volume 3: Modeling and Validation; Multi-Agent and Networked Systems; Path Planning and Motion Control; Tracking Control Systems; Unmanned Aerial Vehicles (UAVs) and Application; Unmanned Ground and Aerial Vehicles; Vibration in Mechanical Systems; Vibrat.

[98]  Geunbae Lim,et al.  System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation , 2017, Sensors.

[99]  R. Behera,et al.  Vibration energy harvesting: A review , 2019, Journal of Advanced Dielectrics.

[100]  Zhengbao Yang,et al.  Toward a 0.33 W piezoelectric and electromagnetic hybrid energy harvester: Design, experimental studies and self-powered applications , 2019 .

[101]  H. Ouakad Nonlinear structural behavior of a size-dependent MEMS gyroscope assuming a non-trivial shaped proof mass , 2020, Microsystem Technologies.

[102]  S. A. M. Lajimi,et al.  A mechanical–thermal noise analysis of a nonlinear microgyroscope , 2017 .

[103]  S. Senturia,et al.  M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .

[104]  Andrei M. Shkel,et al.  MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness (MEMS Reference Shelf) , 2008 .

[106]  Shangchun Fan,et al.  A method to simulate the vibrating characters of the resonator for resonant MEMS gyroscope , 2016 .

[107]  N. Sepúlveda,et al.  Design of flexible piezoelectric gyroscope for structural health monitoring , 2019 .

[108]  M. Younis,et al.  Electrothermally Tunable Arch Resonator , 2017, Journal of Microelectromechanical Systems.

[109]  Rudra Pratap,et al.  Design, modelling and simulation of vibratory micromachined gyroscopes , 2006 .

[110]  K. M. Liew,et al.  Design and simulation of an angular-rate vibrating microgyroscope , 2004 .

[111]  M. Younis,et al.  Electrothermally actuated tunable clamped-guided resonant microbeams , 2018 .

[112]  Xingling Shao,et al.  Design and Experiment for Dual-Mass MEMS Gyroscope Sensing Closed-Loop System , 2020, IEEE Access.

[113]  Nader Jalili,et al.  Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion , 2007 .

[114]  N. Wakatsuki,et al.  A tubular piezoelectric vibrator gyroscope , 2006, IEEE Sensors Journal.

[115]  M. M. Hasan,et al.  Electrothermally actuated resonant rate gyroscope fabricated using the MetalMUMPs , 2011, Microelectron. J..

[116]  Guojin Tan,et al.  Vibratory characteristics of cracked non-uniform beams with different boundary conditions , 2019, Journal of Mechanical Science and Technology.

[117]  G. Langfelder,et al.  Modeling and First Characterization of Broad-Spectrum Vibration Rejection of Frequency Modulated Gyroscopes , 2020, 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS).

[118]  Tamal Mukherjee,et al.  Simulation of stress effects on mode-matched MEMS gyroscope bias and scale factor , 2014, 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014.

[119]  Yun Ki Hong,et al.  Modeling of angular-rate bandwidth for a vibrating microgyroscope , 2003 .

[120]  Ram Gopal,et al.  Lumped parameter analytic modeling and behavioral simulation of a 3-DOF MEMS gyro-accelerometer , 2015 .

[121]  Characterization of Lead Zirconium Titanate thin films based multifunctional energy harvesters , 2017 .

[122]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[124]  A. Hunter,et al.  Nonlinear modeling and performance analysis of cracked beam microgyroscopes , 2020 .

[125]  Andreas Kugi,et al.  Modelling and Optimization of a Silicon Tuning Fork Gyroscope , 2004 .

[126]  M. Ahmadian,et al.  The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes , 2014 .

[127]  Andrei M. Shkel,et al.  Active structural error suppression in MEMS vibratory rate integrating gyroscopes , 2003 .

[128]  A.A. Trusov,et al.  Environmentally Robust MEMS Vibratory Gyroscopes for Automotive Applications , 2009, IEEE Sensors Journal.

[129]  A. Abdelkefi,et al.  Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications , 2017 .

[130]  K. Halonen,et al.  Effects of Synchronous Demodulation in Vibratory MEMS Gyroscopes: A Theoretical Study , 2008, IEEE Sensors Journal.

[131]  Yi-Hsuan Tu,et al.  An ARMA-Based Digital Twin for MEMS Gyroscope Drift Dynamics Modeling and Real-Time Compensation , 2021, IEEE Sensors Journal.

[132]  J. M. Larson,et al.  High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma , 2003 .