Workshop on Machine Learning for User Modeling : Challenges Edinburgh , Scotland 24

Adaptive information systems typically exploit knowledge about the user’s interests, preferences, goals etc. to determine wha t should be presented to the user and how this presentation should take place. When de aling with mobile users, however, information about their motions—the place s visited, the duration of stays, average velocity etc.—can be additionally exploi ted to enrich the user model and better adapt the system behavior to the user’s need s. This paper discusses what type of positioning data and background knowled ge is required to achieve such a motion-based adaptation of information prov ision and how it can be implemented using a variety of mostly standard machine-l earning techniques.

[1]  James E. Pitkow,et al.  Characterizing Browsing Strategies in the World-Wide Web , 1995, Comput. Networks ISDN Syst..

[2]  Franck Thollard,et al.  Entropie relative et algorithmes d'inférence grammaticale probabiliste , 1999 .

[3]  Patrick Gallinari,et al.  Learning "Generalization/Specialization" Relations between Concepts - Application for Automatically Building Thematic Document Hierarchies , 2004, RIAO.

[4]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[5]  Elaine Rich,et al.  User Modeling via Stereotypes , 1998, Cogn. Sci..

[6]  H. Lan,et al.  SWRL : A semantic Web rule language combining OWL and ruleML , 2004 .

[7]  Gerd Wagner,et al.  Design Rationale for RuleML: A Markup Language for Semantic Web Rules , 2001, SWWS.

[8]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[9]  Stephen J. Roberts,et al.  Hierarchy, priors and wavelets: structure and signal modelling using ICA , 2004, Signal Process..

[10]  Paul J. Walmsley,et al.  XML Schema Part 0: Primer Second Edition , 2004 .

[11]  George M. Giaglis,et al.  A taxonomy of indoor and outdoor positioning techniques for mobile location services , 2002, SECO.

[12]  Arnold L. Rosenberg,et al.  Finding topic words for hierarchical summarization , 2001, SIGIR '01.

[13]  Gerhard Widmer Combining Robustness and Flexibility in Learning Drifting Concepts , 1994, ECAI.

[14]  Luc De Raedt,et al.  Constraint Based Mining of First Order Sequences in SeqLog , 2004, Database Support for Data Mining Applications.

[15]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[16]  J. Kay,et al.  Automatic Induction of Rules of e-mail Classification , 2001 .

[17]  Ramakrishnan Srikant,et al.  Hippocratic Databases , 2002, VLDB.

[18]  John G. Taylor,et al.  The New ERA in Supervised Learning , 1997, Neural Networks.

[19]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2002, Journal of Cryptology.

[20]  François Jacquenet,et al.  Mining Frequent Logical Sequences with SPIRIT-LoG , 2002, ILP.

[21]  Christian A. Müller,et al.  Recognizing Time Pressure and Cognitive Load on the Basis of Speech: An Experimental Study , 2001, User Modeling.

[22]  François Bry,et al.  Reasoning on the Web: Language Prototypes and Perspectives , 2004, EWIMT.

[23]  Judy Kay,et al.  Personis: A Server for User Models , 2002, AH.

[24]  V. Pelechano,et al.  Navigational Properties and User Attributes for Modelling Adaptive Web Applications , 2004 .

[25]  Dieter Fensel,et al.  A Logical Framework for Web Service Discovery , 2004, SWS@ISWC.

[26]  Ingrid Zukerman,et al.  Bayesian Models for Keyhole Plan Recognition in an Adventure Game , 2004, User Modeling and User-Adapted Interaction.

[27]  Alenka Kavcic,et al.  The role of user models in adaptive hypermedia systems , 2000, 2000 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat. No.00CH37099).

[28]  Georgios Paliouras,et al.  Navigation , 2022 .

[29]  Mathias Géry,et al.  Evaluation of web usage mining approaches for user's next request prediction , 2003, WIDM '03.

[30]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[31]  W. Bruce Croft,et al.  Deriving concept hierarchies from text , 1999, SIGIR '99.

[32]  Gregory D. Abowd,et al.  Towards a Better Understanding of Context and Context-Awareness , 1999, HUC.

[33]  Gregory D. Abowd,et al.  A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications , 2001, Hum. Comput. Interact..

[34]  Samuel Kaski,et al.  Relevance Feedback from Eye Movements for Proactive Information Retrieval , 2004 .

[35]  Olivier Boissier,et al.  Conversation Mining in Multi-agent Systems , 2003, CEEMAS.

[36]  Mark Levene,et al.  Data Mining of User Navigation Patterns , 1999, WEBKDD.

[37]  Jeffrey O. Kephart,et al.  Incremental Learning in SwiftFile , 2000, ICML.

[38]  Ray Bareiss,et al.  Practical methods for automatically generating typed links , 1996, HYPERTEXT '96.

[39]  Jaideep Srivastava,et al.  Web mining: information and pattern discovery on the World Wide Web , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[40]  Yuan Qi,et al.  Expectation propagation for signal detection in flat-fading channels , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[41]  Michael I. Jordan,et al.  Nonparametric decentralized detection using kernel methods , 2005, IEEE Transactions on Signal Processing.

[42]  Enrique Alfonseca,et al.  Modelling Users' Interests and Needs for an Adaptive Online Information System , 2003, User Modeling.

[43]  Peter Dolog,et al.  The Personal Reader: Personalizing and Enriching Learning Resources Using Semantic Web Technologies , 2004, AH.

[44]  Patrick Gallinari,et al.  Statistical machine learning for tracking hypermedia user behaviour , 2003 .

[45]  Emilio Soria Olivas,et al.  Determinacion de tendencias en un portal web utilizando tecnicas no supervisadas. Aplicacion a sistemas de recomendaciones basados en filtrado colaborativo. , 2004 .

[46]  Raghu Krishnapuram,et al.  A clustering algorithm for asymmetrically related data with applications to text mining , 2001, CIKM '01.

[47]  Gerd Wagner How to Design a General Rule Markup Language? , 2002, XSW.

[48]  Torsten Schaub,et al.  A semantic framework for preference handling in answer set programming , 2003, Theory and Practice of Logic Programming.

[49]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[50]  Krzysztof Z. Gajos,et al.  Automatically personalizing user interfaces , 2003, IJCAI 2003.

[51]  Jesus Boticario,et al.  A Reinforcement Learning Approach to Achieve Unobtrusive and Interactive Recommendation Systems for Web-Based Communities , 2004, AH.

[52]  Pedro M. Domingos,et al.  Relational Markov models and their application to adaptive web navigation , 2002, KDD.

[53]  Peter Dolog,et al.  Towards the Adaptive Semantic Web , 2003, PPSWR.

[54]  Natalia Stash,et al.  AHA! The adaptive hypermedia architecture , 2003, HYPERTEXT '03.

[55]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[56]  Tim Furche,et al.  Querying the Web Reconsidered: Design Principles for Versatile Web Query Languages , 2005, Int. J. Semantic Web Inf. Syst..

[57]  Jason D. M. Rennie ifile: An Application of Machine Learning to E-Mail Filtering , 2000 .

[58]  Jef Wijsen,et al.  Logical Languages for Data Mining , 2003, Logics for Emerging Applications of Databases.

[59]  Eric Schwarzkopf An Adaptive Web Site for the UM2001 Conference , 2001 .

[60]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[61]  Gerard Salton,et al.  Automatic text decomposition using text segments and text themes , 1996, HYPERTEXT '96.

[62]  Harith Alani,et al.  Trust Strategies for the Semantic Web , 2004, Trust@ISWC.

[63]  Roberto Chinnici,et al.  Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language , 2007 .

[64]  Peter Pirolli,et al.  Mining Longest Repeating Subsequences to Predict World Wide Web Surfing , 1999, USENIX Symposium on Internet Technologies and Systems.

[65]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[66]  Sameer Singh,et al.  Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..

[67]  Manuela M. Veloso,et al.  Non-Parametric Time Series Classification , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[68]  Pedro M. Domingos Prospects and challenges for multi-relational data mining , 2003, SKDD.

[69]  Hannu Toivonen,et al.  Discovery of frequent DATALOG patterns , 1999, Data Mining and Knowledge Discovery.

[70]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[71]  Nicola Henze,et al.  Student Modeling in an Active Learning Environment using Bayesian Networks , 1998 .

[72]  Michael Eckert,et al.  Reactivity on the web: paradigms and applications of the language XChange , 2005, SAC '05.

[73]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[74]  François Jacquenet,et al.  Learning User Preferences on the WEB , 1998, PAKDD.

[75]  José Carlos Príncipe,et al.  On the use of neural networks in the generalized likelihood ratio test for detecting abrupt changes in signals , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[76]  Georgios Paliouras,et al.  Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach , 2000, ArXiv.

[77]  Russell Greiner,et al.  Learning a Model of a Web User's Interests , 2003, User Modeling.

[78]  Irena Koprinska,et al.  A neural network based approach to automated e-mail classification , 2003, Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003).

[79]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[80]  Elena Not,et al.  HIPS: hyper-interaction within physical space , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[81]  Arul Prakash Asirvatham,et al.  Web Page Classification based on Document Structure , 2001 .

[82]  E. Frías-Martínez A Prediction Model for User Access Sequences , 2002 .

[83]  Gerald Sommer,et al.  Pattern Recognition by Self-Organizing Neural Networks , 1994 .

[84]  Geoffrey I. Webb,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Machine Learning for User Modeling , 1999 .

[85]  Saso Dzeroski,et al.  Multi-relational data mining: an introduction , 2003, SKDD.

[86]  Klaus R. Scherer,et al.  Ways to study the nature and frequency of our daily emotions: reply to the commentaries on “Emotions in everyday life” , 2004 .

[87]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[88]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[89]  DIMITRIOS PIERRAKOS,et al.  User Modeling and User-Adapted Interaction , 1994, User Modeling and User-Adapted Interaction.

[90]  Alexander J. Smola,et al.  Exponential Families and Kernels , 2004 .

[91]  Dan Brickley,et al.  Rdf vocabulary description language 1.0 : Rdf schema , 2004 .

[92]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[93]  Michèle Sebag,et al.  Scalability and efficiency in multi-relational data mining , 2003, SKDD.

[94]  Peter Brusilovsky,et al.  Adaptive Hypermedia: An Attempt to Analyze and Generalize , 1996, MHVR.

[95]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[96]  Ian H. Beaumont,et al.  Workshop on adaptive hypertext and hypermedia , 1995, LINK.

[97]  Hendrik Blockeel,et al.  Top-Down Induction of First Order Logical Decision Trees , 1998, AI Commun..