On the Incremental Union of Relations: A Key Property of General Systems Explained

Relations are one of the most important conceptual models and mathematical entities in logic, discrete mathematics, computer science, software science, system science, and formal semantics. However, some fundamental and indispensable operations on formal relations were overlooked in traditional studies. This paper presents an extended relation theory with a set of novel algebraic operators on relations beyond classic operations. The algebraic operators on formal relations known as the incremental union and decremental disunion are formally elaborated. The property of relational gains is mathematically modeled, which explains the dynamic mechanism of relations generated by associations of static sets of objects in physical or abstract systems.

[1]  Yingxu Wang Neuroinformatics Models of Human Memory: Mapping the Cognitive Functions of Memory onto Neurophysiological Structures of the Brain , 2013, Int. J. Cogn. Informatics Nat. Intell..

[2]  Edward L. Keenan,et al.  Formal Semantics of Natural Language , 1975 .

[3]  Yingxu Wang,et al.  On Concept Algebra for Computing with Words (CWW) , 2010, Int. J. Semantic Comput..

[4]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[5]  Yingxu Wang,et al.  On Visual Semantic Algebra (VSA): A Denotational Mathematical Structure for Modeling and Manipulating Visual Objects and Patterns , 2009, Int. J. Softw. Sci. Comput. Intell..

[6]  Yingxu Wang,et al.  Contemporary Cybernetics and Its Facets of Cognitive Informatics and Computational Intelligence , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Yingxu Wang,et al.  The Theoretical Framework of Cognitive Informatics , 2007, Int. J. Cogn. Informatics Nat. Intell..

[8]  Yingxu Wang,et al.  On Granular Algebra: A Denotational Mathematics for Modeling Granular Systems in Granular Computing , 2014 .

[9]  Yingxu Wang,et al.  On Denotational Mathematics Foundations for the Next Generation of Computers: Cognitive Computers for Knowledge Processing , 2012 .

[10]  Richard Montague,et al.  ENGLISH AS A FORMAL LANGUAGE , 1975 .

[11]  Yingxu Wang,et al.  On Contemporary Denotational Mathematics for Computational Intelligence , 2008, Trans. Comput. Sci..

[12]  Yingxu Wang,et al.  On Abstract Intelligence: Toward a Unifying Theory of Natural, Artificial, Machinable, and Computational Intelligence , 2009, Int. J. Softw. Sci. Comput. Intell..

[13]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[14]  Yingxu Wang,et al.  Towards the abstract system theory of system science for cognitive and intelligent systems , 2015, Complex & Intelligent Systems.

[15]  Yingxu Wang,et al.  On Neuroinformatics: Mathematical Models of Neuroscience and Neurocomputing , 2012 .

[16]  Yingxu Wang,et al.  Basic theories for neuroinformatics and neurocomputing , 2013, 2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing.

[17]  B. Russell The Principles of Mathematics , 1938 .

[18]  George J. Klir,et al.  Facets of Systems Science , 1991 .

[19]  Yingxu Wang On Cognitive Informatics , 2003 .

[20]  Yingxu Wang Inference Algebra (IA): A Denotational Mathematics for Cognitive Computing and Machine Reasoning (I) , 2011, Int. J. Cogn. Informatics Nat. Intell..

[21]  Witold Pedrycz,et al.  A Doctrine of Cognitive Informatics (CI) , 2009, Fundam. Informaticae.

[22]  Yingxu Wang,et al.  Cognitive Learning Methodologies for Brain-Inspired Cognitive Robotics , 2015, Int. J. Cogn. Informatics Nat. Intell..

[23]  Yingxu Wang On a Novel Cognitive Knowledge Base (CKB) for Cognitive Robots and Machine Learning , 2014, Int. J. Softw. Sci. Comput. Intell..

[24]  Yingxu Wang,et al.  On System Algebra: A Denotational Mathematical Structure for Abstract System Modeling , 2008, Int. J. Cogn. Informatics Nat. Intell..

[25]  Yingxu Wang,et al.  Software Engineering Foundations: A Software Science Perspective , 2007 .

[26]  Yingxu Wang,et al.  Software Science: On the General Mathematical Models and Formal Properties of Software , 2014 .

[27]  Yingxu Wang,et al.  The Real-Time Process Algebra (RTPA) , 2002, Ann. Softw. Eng..

[28]  Lotfi A. Zadeh,et al.  From Computing with Numbers to Computing with Words - from Manipulation of Measurements to Manipulation of Perceptions , 2005, Logic, Thought and Action.

[29]  Yingxu Wang,et al.  RTPA: A Denotational Mathematics for Manipulating Intelligent and Computational Behaviors , 2008, Int. J. Cogn. Informatics Nat. Intell..

[30]  Timothy O'Connor,et al.  Philosophy of Mind: Contemporary Readings , 2003 .

[31]  Yiyu Yao,et al.  On the System Algebra Foundations for Granular Computing , 2009, Int. J. Softw. Sci. Comput. Intell..

[32]  Edward A. Bender,et al.  Mathematical methods in artificial intelligence , 1996 .

[33]  Yingxu Wang,et al.  On Semantic Algebra: A Denotational Mathematics for Natural Language Comprehension and Cognitive Computing , 2013 .

[34]  Yingxu Wang,et al.  Formal Relational Rules of English Syntax for Cognitive Linguistics, Machine Learning, and Cognitive Computing , 2013 .

[35]  Yingxu Wang,et al.  Semantic Manipulations and Formal Ontology for Machine Learning based on Concept Algebra , 2011, Int. J. Cogn. Informatics Nat. Intell..

[36]  Yingxu Wang,et al.  On Cognitive Computing , 2009, Int. J. Softw. Sci. Comput. Intell..

[37]  Shushma Patel,et al.  A layered reference model of the brain (LRMB) , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[38]  Noam Chomsky,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[39]  Yingxu Wang,et al.  On Concept Algebra: A Denotational Mathematical Structure for Knowledge and Software Modeling , 2008, Int. J. Cogn. Informatics Nat. Intell..

[40]  William S. Hatcher,et al.  Foundations of Mathematics , 1968 .

[41]  Yingxu Wang,et al.  In Search of Denotational Mathematics: Novel Mathematical Means for Contemporary Intelligence, Brain, and Knowledge Sciences , 2012 .

[42]  Hongbin Zha,et al.  Coarse-to-fine vision-based localization by indexing scale-Invariant features , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[43]  Vibhu Mittal Book review: Knowledge Systems Design by John K. Debenham (Prentice Hall, 1989) , 1990 .