Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures

This paper reports solutions to the issues of profile control, microloading effect and suppression of the sidewall roughness of submicrometer trenches by modifying the regular conditions of the Bosch process that is often employed in the inductively coupled plasma (ICP) deep reactive ion etching (DRIE) system. Additionally, under the modified processing conditions, a high efficient antireflection structure can be fabricated.

[1]  Renshi Sawada,et al.  Reactive–fast‐atom beam etching of GaAs using Cl2 gas , 1989 .

[2]  Kazuhiro Hane,et al.  Broadband Antireflection Gratings for Glass Substrates Fabricated by Fast Atom Beam Etching , 2000 .

[3]  K. Kano,et al.  Improvement of Si/SiO/sub 2/ mask etching selectivity in the new D-RIE process , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[4]  W H Southwell,et al.  Antireflection surfaces in silicon using binary optics technology. , 1992, Applied optics.

[5]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[6]  F. Ayazi,et al.  High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology , 2000, Journal of Microelectromechanical Systems.

[7]  N Nishida,et al.  Antireflection effect in ultrahigh spatial-frequency holographic relief gratings. , 1987, Applied optics.

[8]  Xin Zhang,et al.  Anisotropic silicon trenches 300–500 μm deep employing time multiplexed deep etching (TMDE) , 2001 .

[9]  K. Hane,et al.  Subwavelength Antireflection Gratings for Light Emitting Diodes and Photodiodes Fabricated by Fast Atom Beam Etching , 2001, Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468).

[10]  Y. Feurprier,et al.  High aspect ratio SiO2 etching with high resist selectivity improved by addition of organosilane to tetrafluoroethyl trifluoromethyl ether , 2000 .

[11]  K. Yamauchi,et al.  Fast Atom Beam Etching of Glass Materials with Contact and Non-Contact Masks , 1997 .

[12]  G. K. Ho,et al.  High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps , 2003 .

[13]  Serrita A. McAuley,et al.  Silicon micromachining using a high-density plasma source , 2001 .

[14]  M. Esashi,et al.  RF-Plasma-Assisted Fast Atom Beam Etching , 2000, Digest of Papers Microprocesses and Nanotechnology 2000. 2000 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.00EX387).

[15]  K. Hane,et al.  High efficient light-emitting diodes with antireflection subwavelength gratings , 2002, IEEE Photonics Technology Letters.

[16]  H. Kuwano,et al.  New high‐power fast atom beam source , 1994 .

[17]  M. G. Moharam,et al.  Coupled-Wave Analysis Of Two-Dimensional Dielectric Gratings , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[18]  W. E. Horne,et al.  Reactive ion etching of silicon stencil masks in the presence of an axial magnetic field , 1995 .