Minimizing Phosphorus Pickup During Melting and Casting of Lightweight Fe–Mn–Al–C Steels

[1]  D. C. Aken,et al.  Microstructural and Fracture Behavior of Phosphorus-Containing Fe-30Mn-9Al-1Si-0.9C-0.5Mo Alloy Steel , 2015, Metallurgical and Materials Transactions A.

[2]  D. V. Van Aken,et al.  High Manganese and Aluminum Steels for the Military and Transportation Industry , 2014, JOM.

[3]  N. Medvedeva,et al.  An Atom Probe Study of Kappa Carbide Precipitation and the Effect of Silicon Addition , 2014, Metallurgical and Materials Transactions A.

[4]  X. Pan,et al.  An overview on high manganese steel casting , 2014 .

[5]  V. Richards,et al.  Dynamic Fracture Toughness of High Strength Cast Steels , 2013, International Journal of Metalcasting.

[6]  L. Bartlett Effect Of Aluminum and Carbon On The Dynamic Fracture Toughness Of Fe-Mn-Al-C Steels , 2013 .

[7]  N. Medvedeva,et al.  First-principles study of the Mn, Al and C distribution and their effect on the stacking fault energies in austenite , 2012, 1208.0310.

[8]  Kyung-Tae Park,et al.  Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition , 2010 .

[9]  K. Ishida,et al.  High-strength Fe–20Mn–Al–C-based Alloys with Low Density , 2010 .

[10]  N. Medvedeva,et al.  Effect of Phosphorus on Cleavage Fracture in Κ-Carbide , 2010 .

[11]  D. C. Aken,et al.  Effect of Phosphorus and Silicon on the Precipitation of κ-carbides in Fe-30%Mn-9%Al-X%Si-0.9%C-0.5%Mo Alloys , 2010 .

[12]  T. Weerasooriya,et al.  Tensile, High Strain Rate Compression and Microstructural Evaluation of Lightweight Age Hardenable Cast Fe-30Mn-9Al-XSi-0.9C-0.5Mo Steel , 2010 .

[13]  Georg Frommeyer,et al.  Microstructures and Mechanical Properties of High‐Strength Fe‐Mn‐Al‐C Light‐Weight TRIPLEX Steels , 2006 .

[14]  Seon-hyo Kim,et al.  X-ray observation of phosphorus vaporization from steelmaking slag and suppression method of phosphorus reversion in liquid iron , 2006 .

[15]  L. C. Pereira,et al.  Room-temperature cleavage fracture of FeMnAlC steels , 2004 .

[16]  Y. Kimura,et al.  Microstructure control and ductility improvement of the two-phase γ-Fe/κ-(Fe, Mn)3AlC alloys in the Fe–Mn–Al–C quaternary system , 2004 .

[17]  L. C. Pereira,et al.  Heat treatment and thermal stability of FeMnAlC alloys , 2003 .

[18]  O. Bouaziz,et al.  Modelling of TWIP effect on work-hardening , 2001 .

[19]  D. Shulik,et al.  Phosphide eutectic in a Hadfield steel structure , 1992 .

[20]  W. C. Leslie,et al.  Mechanism of work hardening in Hadfield manganese steel , 1981 .

[21]  E. Kato,et al.  The Standard Free Energies of Dissolution of Phosphorus Gases in Liquid Iron , 1980 .

[22]  E. T. Turkdogan Physical chemistry of high temperature technology , 1980 .

[23]  M. Gleiser,et al.  Thermochemistry for steelmaking , 1960 .