Fabrication of a Miniature Paper-Based Electroosmotic Actuator

A voltage-controlled hydraulic actuator is presented that employs electroosmotic fluid flow (EOF) in paper microchannels within an elastomeric structure. The microfluidic device was fabricated using a new benchtop lamination process. Flexible embedded electrodes were formed from a conductive carbon-silicone composite. The pores in the layer of paper placed between the electrodes served as the microchannels for EOF, and the pumping fluid was propylene carbonate. A sealed fluid-filled chamber was formed by film-casting silicone to lay an actuating membrane over the pumping liquid. Hydraulic force generated by EOF caused the membrane to bulge by hundreds of micrometers within fractions of a second. Potential applications of these actuators include soft robots and biomedical devices.

[1]  S. E. Wood,et al.  ELECTROOSMOSIS IN PAPER ELECTROCHROMATOGRAPHY WITH ELECTRODE VESSELS , 1954 .

[2]  William F. Pickard,et al.  Experimental Investigation of the Sumoto Effect , 1961 .

[3]  R. D. Levie,et al.  The influence of surface roughness of solid electrodes on electrochemical measurements , 1965 .

[4]  A. Pisano,et al.  Microbubble powered actuator , 1991, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers.

[5]  Kensall D. Wise,et al.  Thermally driven phase-change microactuation , 1995 .

[6]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[7]  A. Kornyshev,et al.  Double-layer capacitance on a rough metal surface , 1996 .

[8]  I. Manas‐Zloczower,et al.  Influence of matrix infiltration on the dispersion kinetics of carbon black agglomerates , 1997 .

[9]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[10]  C. Culbertson,et al.  Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. , 2001, Analytical chemistry.

[11]  R. Hägglund,et al.  Kinetics of polyelectrolyte adsorption on cellulosic fibers , 2001 .

[12]  Shinichi Yokota,et al.  A Micro Motor Using Electroconjugate Fluids (ECFs) , 2001 .

[13]  Juan G. Santiago,et al.  Fabrication and characterization of electroosmotic micropumps , 2001 .

[14]  Dirk Lefeber,et al.  Pneumatic artificial muscles: Actuators for robotics and automation , 2002 .

[15]  Juan G. Santiago,et al.  A planar electroosmotic micropump , 2002 .

[16]  G. Whitesides,et al.  Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. , 2003, Analytical chemistry.

[17]  Generating high pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems , 2003 .

[18]  Juan G. Santiago,et al.  High-pressure electroosmotic pumps based on porous polymer monoliths , 2004 .

[19]  Christopher D. Rahn,et al.  Design of an artificial muscle continuum robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  Lingxin Chen,et al.  Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography. , 2004, Journal of chromatography. A.

[21]  Z. Fang,et al.  Study on deformation characters of a large rubber circular plate , 2004 .

[22]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[23]  A. Duarte,et al.  Modification of cellulosic fibres with functionalised silanes: development of surface properties , 2004 .

[24]  Susan Z. Hua,et al.  An electrolytically actuated micropump , 2004 .

[25]  Karl Gatterer,et al.  The floating water bridge , 2006 .

[26]  E. Schamiloglu,et al.  Electrical Breakdown and Dielectric Recovery of Propylene Carbonate , 2006, IEEE Transactions on Plasma Science.

[27]  K. Abraham,et al.  The Role of Carbonate Solvents on Lithium Intercalation into Graphite , 2007 .

[28]  Koichi Suzumori,et al.  A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[29]  Markus Böhm,et al.  A programmable planar electroosmotic micropump for lab-on-a-chip applications , 2008 .

[30]  On the thickness of soap films: an alternative to Frankel's law , 2008, Journal of Fluid Mechanics.

[31]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[32]  Shili Wang,et al.  Electroosmotic pumps and their applications in microfluidic systems , 2009, Microfluidics and nanofluidics.

[33]  Elisabeth Smela,et al.  Electroosmotically driven microfluidic actuators , 2009 .

[34]  S. Yokota,et al.  MEMS-based tube-type micropump by using electro-conjugated fluid (ECF) , 2012, The XIX International Conference on Electrical Machines - ICEM 2010.

[35]  Detlef Lohse,et al.  Building water bridges in air: Electrohydrodynamics of the floating water bridge , 2010, 1010.4019.

[36]  Dominiek Reynaerts,et al.  Pneumatic and hydraulic microactuators: a review , 2010 .

[37]  Kenjiro Takemura,et al.  Electro-Conjugate Fluid Jet-Driven Micro Artificial Antagonistic Muscle Actuators and their Integration , 2010, Adv. Robotics.

[38]  G. Whitesides,et al.  Diagnostics for the developing world: microfluidic paper-based analytical devices. , 2010, Analytical chemistry.

[39]  Isao Shimoyama,et al.  Tensile film stress of parylene deposited on liquid. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[40]  T. Squires,et al.  Suppression of electro-osmotic flow by surface roughness. , 2010, Physical Review Letters.

[41]  Elisabeth Smela,et al.  PDMS/graphite stretchable electrodes for dielectric elastomer actuators , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[42]  T. Speck,et al.  Mechanics without muscle: biomechanical inspiration from the plant world. , 2010, Integrative and comparative biology.

[43]  Hans-Jürgen Butt,et al.  Surface and Interfacial Forces , 2010 .

[44]  Xin Chen,et al.  Soft Mobile Robots with On-Board Chemical Pressure Generation , 2011, ISRR.

[45]  M. Lebl,et al.  Radial flow electroosmotic pump , 2011 .

[46]  Toward an Electrolytic Micropump Actuator Design with Controlled Cyclic Bubble Growth and Recombination , 2011 .

[47]  K. Takemura,et al.  Dominant factors inducing electro-conjugate fluid flow , 2011 .

[48]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[49]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[50]  Patrick Pittet,et al.  Nanocomposite Carbon-PDMS Material for Chip-Based Electrochemical Detection , 2011 .

[51]  E. Smela,et al.  Design of compliant meanders for applications in MEMS, actuators, and flexible electronics , 2012 .

[52]  Robert Langer,et al.  A 3D Interconnected Microchannel Network Formed in Gelatin by Sacrificial Shellac Microfibers , 2012, Advanced materials.

[53]  Xu Li,et al.  A perspective on paper-based microfluidics: Current status and future trends. , 2012, Biomicrofluidics.

[54]  Shaorong Liu,et al.  Miniaturized electroosmotic pump capable of generating pressures of more than 1200 bar. , 2012, Analytical chemistry.

[55]  E. Smela,et al.  A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane). , 2012, Biomicrofluidics.

[56]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[57]  N. D. de Rooij,et al.  Foil-level fabrication of inkjet-printed pyroMEMS balloon actuators , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[58]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[59]  Michael De Volder Capillary Based Sealing , 2013 .

[60]  Large deformation contact mechanics of a pressurized long rectangular membrane. II. Adhesive contact , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  C. Aracil,et al.  Electroosmotic impulsion device for integration in PCB-MEMS , 2013, 2013 Spanish Conference on Electron Devices.

[62]  Norihisa Miki,et al.  Liquid Encapsulation Technology for Microelectromechanical Systems , 2013 .

[63]  G. Whitesides,et al.  Soft Machines That are Resistant to Puncture and That Self Seal , 2013, Advanced materials.

[64]  Elisabeth Smela,et al.  Stable electroosmotically driven actuators , 2013, Smart Structures.

[65]  Pierre Lambert Surface Tension in Microsystems: Engineering Below the Capillary Length , 2013 .

[66]  Ivan Penskiy,et al.  Dielectric elastomer actuators fabricated using a micro-molding process , 2014 .

[67]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[68]  Oliver Schreer,et al.  The Preparation of Electrohydrodynamic Bridges from Polar Dielectric Liquids , 2014, Journal of visualized experiments : JoVE.

[69]  Daniela Rus,et al.  A Recipe for Soft Fluidic Elastomer Robots , 2015, Soft robotics.

[70]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[71]  Abraham Simpson Chen,et al.  Bubble‐free electrokinetic flow with propylene carbonate , 2015, Electrophoresis.

[72]  Shinichi Yokota,et al.  ECF micropump fabricated by electroforming with novel self-aligned micro-molding technology , 2015 .

[73]  Wolfgang Hilber,et al.  Stimulus-active polymer actuators for next-generation microfluidic devices , 2016 .

[74]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[75]  J. Kedzierski,et al.  Microhydraulic Electrowetting Actuators , 2016, Journal of Microelectromechanical Systems.