Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem: I. Rational solutions

In this paper, we present a new method of deducing infinite sequences of exact solutions of q-discrete Painlevé equations by using their associated linear problems. The specific equation we consider in this paper is a q-discrete version of the second Painlevé equation (q-PII) with affine Weyl group symmetry of type (A2+A1)(1). We show, for the first time, how to use the q-discrete linear problem associated with q-PII to find an infinite sequence of exact rational solutions and also show how to find their representation as determinants by using the linear problem. The method, while demonstrated for q-PII here, is also applicable to other discrete Painlevé equations.

[1]  坂井 秀隆 Rational surfaces associated with affine root systems and geometry of the Painlevé equations , 1999 .

[2]  R. D. Carmichael,et al.  The General Theory of Linear q-Difference Equations , 1912 .

[3]  B. Dubrovin,et al.  Monodromy of certain Painlevé–VI transcendents and reflection groups , 1998 .

[4]  H. Airault,et al.  Rational solutions of Painleve equations , 1979 .

[5]  岡本 和夫,et al.  Sur les feuilletages associes aux equations du second ordre a points critiques fixes de P. Painleve , 1978 .

[6]  Athanassios S. Fokas,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The isomonodromy approach in the theory of two-dimensional quantum gravitation , 1990 .

[7]  George D. Birkhoff,et al.  General theory of linear difference equations , 1911 .

[8]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[9]  B. Gambier,et al.  Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .

[10]  J. Hietarinta,et al.  A Lax pair for a lattice modified KdV equation, reductions to q-Painlevé equations and associated Lax pairs , 2007 .

[11]  J. Shohat A differential equation for orthogonal polynomials , 1939 .

[12]  A. Ramani,et al.  Discrete Painlevé equations: coalescences, limits and degeneracies , 1995, solv-int/9510011.

[13]  P. Deift,et al.  A request: The Painlevé Project , 2010 .

[14]  On a q-Difference Painlevé III Equation: I. Derivation, Symmetry and Riccati Type Solutions , 2002, nlin/0205019.

[15]  Kazuo Okamoto,et al.  Sur les feuilletages associés aux équation du second ordre à points critiques fixes de P. Painlevé Espaces des conditions initiales , 1979 .

[16]  P. Painlevé,et al.  Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .

[17]  K. Kajiwara,et al.  Projective reduction of the discrete Painlev ´ e system of type , 2010 .

[18]  M. Murata Lax forms of the q-Painlevé equations , 2008, 0810.0058.

[19]  Richard P. Fuchs Sur quelque équations différentielles linéaires du second ordre , 1905 .

[20]  P. Deift Universality for mathematical and physical systems , 2006, math-ph/0603038.

[21]  Ramani,et al.  Discrete versions of the Painlevé equations. , 1991, Physical review letters.

[22]  Kazuo Okamoto,et al.  Studies on the Painlev equations: III. Second and fourth painlev equations,P II andP IV , 1986 .

[23]  Kenji Kajiwara,et al.  On a q-Difference Painlevé III Equation: II. Rational Solutions , 2002, nlin/0205063.