Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem: I. Rational solutions
暂无分享,去创建一个
Nalini Joshi | Yang Shi | N. Joshi | Yang Shi
[1] 坂井 秀隆. Rational surfaces associated with affine root systems and geometry of the Painlevé equations , 1999 .
[2] R. D. Carmichael,et al. The General Theory of Linear q-Difference Equations , 1912 .
[3] B. Dubrovin,et al. Monodromy of certain Painlevé–VI transcendents and reflection groups , 1998 .
[4] H. Airault,et al. Rational solutions of Painleve equations , 1979 .
[5] 岡本 和夫,et al. Sur les feuilletages associes aux equations du second ordre a points critiques fixes de P. Painleve , 1978 .
[6] Athanassios S. Fokas,et al. COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The isomonodromy approach in the theory of two-dimensional quantum gravitation , 1990 .
[7] George D. Birkhoff,et al. General theory of linear difference equations , 1911 .
[8] A. Newell,et al. Monodromy- and spectrum-preserving deformations I , 1980 .
[9] B. Gambier,et al. Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .
[10] J. Hietarinta,et al. A Lax pair for a lattice modified KdV equation, reductions to q-Painlevé equations and associated Lax pairs , 2007 .
[11] J. Shohat. A differential equation for orthogonal polynomials , 1939 .
[12] A. Ramani,et al. Discrete Painlevé equations: coalescences, limits and degeneracies , 1995, solv-int/9510011.
[13] P. Deift,et al. A request: The Painlevé Project , 2010 .
[14] On a q-Difference Painlevé III Equation: I. Derivation, Symmetry and Riccati Type Solutions , 2002, nlin/0205019.
[15] Kazuo Okamoto,et al. Sur les feuilletages associés aux équation du second ordre à points critiques fixes de P. Painlevé Espaces des conditions initiales , 1979 .
[16] P. Painlevé,et al. Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .
[17] K. Kajiwara,et al. Projective reduction of the discrete Painlev ´ e system of type , 2010 .
[18] M. Murata. Lax forms of the q-Painlevé equations , 2008, 0810.0058.
[19] Richard P. Fuchs. Sur quelque équations différentielles linéaires du second ordre , 1905 .
[20] P. Deift. Universality for mathematical and physical systems , 2006, math-ph/0603038.
[21] Ramani,et al. Discrete versions of the Painlevé equations. , 1991, Physical review letters.
[22] Kazuo Okamoto,et al. Studies on the Painlev equations: III. Second and fourth painlev equations,P II andP IV , 1986 .
[23] Kenji Kajiwara,et al. On a q-Difference Painlevé III Equation: II. Rational Solutions , 2002, nlin/0205063.