The Social Force Model and its Relation to the Kladek Formula

It was recently found that the Social Force Model of pedestrian dynamics in a macroscopic limit for 1d movement does not reproduce the empirically found inflection point of the speed-density relation. It could be shown that, however, a simple and intuitively comprehensible extension of the Social Force Model shows the inflection point. Motivated by this observation in this contribution the relation of the Social Force Model with the Kladek formula for the speed-density relation of urban motorized traffic is discussed. Furthermore the models are compared to results data from experiments on vehicular, cycling, and pedestrian dynamics.

[1]  Luis Ferreira,et al.  Estimating the effects of older people in pedestrian flow: A micro-simulation approach , 2011 .

[2]  Michel Bierlaire,et al.  Pedestrian-oriented Flow Characterization , 2014 .

[3]  Yanmei Hu,et al.  An extended multi-anticipative delay model of traffic flow , 2014, Commun. Nonlinear Sci. Numer. Simul..

[4]  Luca Bruno,et al.  Crowd-structure interaction in lively footbridges under synchronous lateral excitation: A literature review. , 2009, Physics of life reviews.

[5]  Khaled Ghedira,et al.  Multi-agent simulation model of pedestrians crowd based on psychological theories , 2011, 2011 4th International Conference on Logistics.

[6]  Dirk Helbing,et al.  Delays, inaccuracies and anticipation in microscopic traffic models , 2006 .

[7]  Luca Bruno,et al.  Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications , 2010, 1003.3891.

[8]  Serge P. Hoogendoorn,et al.  The Nomad Model: Theory, Developments and Applications , 2014 .

[9]  R. Sollacher,et al.  Multi-anticipative car-following model , 1999 .

[10]  A. Schadschneider,et al.  Enhanced Empirical Data for the Fundamental Diagram and the Flow Through Bottlenecks , 2008, 0810.1945.

[11]  Serge P. Hoogendoorn,et al.  Multi-Anticipative Car-Following Behavior: An Empirical Analysis , 2007 .

[12]  Washington Y. Ochieng,et al.  Long-range Collision Avoidance for Shared Space Simulation based on Social Forces , 2014 .

[13]  Jean-Patrick Lebacque,et al.  Multi-anticipative Car-Following Behaviour: Macroscopic Modeling , 2015 .

[14]  A combined Cellular Automata and DEVS simulation , 2012 .

[15]  Kai Nagel,et al.  The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning , 2009 .

[16]  Martin Fellendorf,et al.  Comparing Calibrated Shared Space Simulation Model with Real-Life Data , 2013 .

[17]  Y. Sugiyama,et al.  Traffic jams without bottlenecks — experimental , 2008 .

[18]  Akihiro Nakayama,et al.  Metastability in the formation of an experimental traffic jam , 2009 .

[19]  N Wu Verkehr auf Schnellstrassen im Fundamentaldiagramm - Ein neues Modell und seine Anwendungen , 2000 .

[20]  Partha Chakroborty,et al.  Comparison of Pedestrian Fundamental Diagram across Cultures , 2009, Adv. Complex Syst..

[21]  Wenjian Yu,et al.  Modeling crowd turbulence by many-particle simulations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Martin Fellendorf,et al.  Social Force based Vehicle Model for Two-Dimensional Spaces , 2012 .

[23]  Tobias Kretz,et al.  The Inflection Point of the Speed-Density Relation and the Social Force Model , 2015, ArXiv.

[24]  Liang Chen,et al.  Towards a Multi-Agent Based Software Framework for Fine-Scale Pedestrian Movement Modelling , 2014 .

[25]  A. Seyfried,et al.  The fundamental diagram of pedestrian movement revisited , 2005, physics/0506170.

[26]  A. Seyfried,et al.  Methods for measuring pedestrian density, flow, speed and direction with minimal scatter , 2009, 0911.2165.

[27]  Armin Seyfried,et al.  Comparative Analysis of Pedestrian, Bicycle and Car Traffic Moving in Circuits , 2013 .

[28]  Winnie Daamen,et al.  Modelling passenger flows in public transport facilities , 2004 .

[29]  S. Dai,et al.  Centrifugal force model for pedestrian dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Washington Y. Ochieng,et al.  Modelling shared space users via rule-based social force model , 2015 .

[31]  Serge P. Hoogendoorn,et al.  Shared Space Modeling Based on Social Forces and Distance Potential Field , 2014 .

[32]  Armin Seyfried,et al.  Analyzing Stop-and-Go Waves by Experiment and Modeling , 2011 .

[33]  Jianping Zhang,et al.  Universalities in Fundamental Diagrams of Cars, Bicycles, and Pedestrians , 2015 .

[34]  Jonas Lüßmann,et al.  Network - wide Evaluation of Cooperative Traffic Systems using Microscopic Traffic Flow Simulation , 2012, Simul. Notes Eur..

[35]  Ulrich Weidmann,et al.  Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs, Literaturauswertung , 1992 .

[36]  Ulrich Weidmann,et al.  Parameters of pedestrians, pedestrian traffic and walking facilities , 2006 .

[37]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[38]  G. Lämmel Bottlenecks and Congestion in Evacuation Scenarios : A Microscopic Evacuation Simulation for Large-Scale Disasters , 2008 .

[39]  Dirk Helbing,et al.  Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data , 2007, Adv. Complex Syst..

[40]  Sten Bexelius,et al.  An extended model for car-following , 1968 .

[41]  Habib Haj-Salem,et al.  Multianticipative Piecewise-Linear Car-Following Model , 2012 .

[42]  Rainer Wiedemann,et al.  SIMULATION DES STRASSENVERKEHRSFLUSSES. , 1974 .

[43]  M. Bierlaire,et al.  Probabilistic speed-density relationship for pedestrians based on data driven space and time representation , 2014 .

[45]  Andreas Schadschneider,et al.  Phase Coexistence in Congested States of Pedestrian Dynamics , 2010, ACRI.

[46]  N. Bellomo,et al.  ON THE MODELLING CROWD DYNAMICS FROM SCALING TO HYPERBOLIC MACROSCOPIC MODELS , 2008 .

[47]  Mohcine Chraibi,et al.  Generalized centrifugal-force model for pedestrian dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Luca Bruno,et al.  Footbridge lateral vibrations induced by synchronized pedestrians: an overview on modelling strategies , 2011 .

[49]  Serge P. Hoogendoorn,et al.  Empirical Analysis of Two-Leader Car-Following Behavior , 2006 .

[50]  H. Schwandt,et al.  Fundamental Diagrams and Multiple Pedestrian Streams , 2012 .

[51]  Martin Fellendorf,et al.  Modeling Concepts for Mixed Traffic , 2012 .