(n-3)-edge-fault-tolerant Weak-pancyclicity of (n, K)-star Graphs

The (n,k)-star graphs are a generalized version of n-star graphs, which belong to the class of Cayley graphs, and have been recognized as an attractive alternative to hypercubes for building massively parallel computers. Recently, Chen et al. showed that (n,k)-star graphs are 6-weak-vertex-pancyclic for k=4 and [email protected]?k

[1]  Jung-Sheng Fu,et al.  Weak-vertex-pancyclicity of (n, k)-star graphs , 2008, Theor. Comput. Sci..

[2]  Wei-Kuo Chiang,et al.  The (n, k)-Star Graph: A Generalized Star Graph , 1995, Inf. Process. Lett..

[3]  Peter G. Sassone,et al.  Scaling up the Atlas chip-multiprocessor , 2005, IEEE Transactions on Computers.

[4]  Kunle Olukotun,et al.  A Single-Chip Multiprocessor , 1997, Computer.

[5]  L. Lesniak-Foster,et al.  Some recent results in hamiltonian graphs , 1977 .

[6]  Jimmy J. M. Tan,et al.  Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes , 2003, Inf. Process. Lett..

[7]  Jimmy J. M. Tan,et al.  Fault Hamiltonicity and fault Hamiltonian connectivity of the (n, k)‐star graphs , 2003, Networks.

[8]  Xiaohua Jia,et al.  Embedding of Cycles in Twisted Cubes with Edge-Pancyclic , 2008, Algorithmica.

[9]  Dyi-Rong Duh,et al.  Constructing vertex-disjoint paths in (n, k)-star graphs , 2008, Inf. Sci..

[10]  Jun-Ming Xu,et al.  Edge-pancyclicity of Möbius cubes , 2005, Inf. Process. Lett..

[11]  Toru Araki,et al.  Edge-bipancyclicity and edge-fault-tolerant bipancyclicity of bubble-sort graphs , 2005, 8th International Symposium on Parallel Architectures,Algorithms and Networks (ISPAN'05).

[12]  S. Lakshmivarahan,et al.  Embedding of cycles and Grids in Star Graphs , 1991, J. Circuits Syst. Comput..

[13]  Cheng-Kuan Lin,et al.  The Spanning Connectivity of the (n, k)-star Graphs , 2006, Int. J. Found. Comput. Sci..

[14]  Charles H. C. Little,et al.  Cycles in bipartite tournaments , 1982, J. Comb. Theory, Ser. B.

[15]  Xiao-Dong Hu,et al.  Edge-bipancyclicity of star graphs under edge-fault tolerant , 2006, Appl. Math. Comput..

[16]  L. Moser,et al.  The Theory of Round Robin Tournaments , 1966 .

[17]  Tseng-Kuei Li Cycle embedding in star graphs with edge faults , 2005, Appl. Math. Comput..

[18]  Wei-Kuo Chiang,et al.  Topological Properties of the (n, k)-Star Graph , 1998, Int. J. Found. Comput. Sci..

[19]  Sun-Yuan Hsieh,et al.  Hamiltonian path embedding and pancyclicity on the Mobius cube with faulty nodes and faulty edges , 2006, IEEE Transactions on Computers.

[20]  Jou-Ming Chang,et al.  Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs , 2004 .

[21]  Sun-Yuan Hsieh,et al.  Cycle Embedding on Twisted Cubes , 2006, 2006 Seventh International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'06).

[22]  Sheldon B. Akers,et al.  The Star Graph: An Attractive Alternative to the n-Cube , 1994, ICPP.

[23]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[24]  J. Moon On Subtournaments of a Tournament , 1966, Canadian Mathematical Bulletin.

[25]  Xiaohua Jia,et al.  Node-pancyclicity and edge-pancyclicity of crossed cubes , 2005, Inf. Process. Lett..

[26]  Junming Xu Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.

[27]  Shi-Jinn Horng,et al.  Geodesic-pancyclic graphs , 2007, Discret. Appl. Math..

[28]  Jin-Soo Kim,et al.  Ring embedding in faulty (n,k)-star graphs , 2001, Proceedings. Eighth International Conference on Parallel and Distributed Systems. ICPADS 2001.

[29]  Sun-Yuan Hsieh,et al.  Panconnectivity and edge-pancyclicity of 3-ary N-cubes , 2007, The Journal of Supercomputing.

[30]  Dyi-Rong Duh,et al.  Pancyclicity of Pyramid Networks , 2004, PDPTA.