SynEM, automated synapse detection for connectomics

Nerve tissue contains a high density of chemical synapses, about 1 per µm3 in the mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense connectomic mapping requires the identification of millions to billions of synapses. While the focus of connectomic data analysis has been on neurite reconstruction, synapse detection becomes limiting when datasets grow in size and dense mapping is required. Here, we report SynEM, a method for automated detection of synapses from conventionally en-bloc stained 3D electron microscopy image stacks. The approach is based on a segmentation of the image data and focuses on classifying borders between neuronal processes as synaptic or non-synaptic. SynEM yields 97% precision and recall in binary cortical connectomes with no user interaction. It scales to large volumes of cortical neuropil, plausibly even whole-brain datasets. SynEM removes the burden of manual synapse annotation for large densely mapped connectomes. DOI: http://dx.doi.org/10.7554/eLife.26414.001

[1]  A. L. Eberle,et al.  High-resolution, high-throughput imaging with a multibeam scanning electron microscope , 2015, Journal of microscopy.

[2]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[3]  Pascal Fua,et al.  Learning Context Cues for Synapse Segmentation in EM Volumes , 2012, MICCAI.

[4]  Gregory D. Hager,et al.  VESICLE: Volumetric Evaluation of Synaptic Inferfaces using Computer Vision at Large Scale , 2014, BMVC.

[5]  N. Kasthuri,et al.  Automating the Collection of Ultrathin Serial Sections for Large Volume TEM Reconstructions , 2006, Microscopy and Microanalysis.

[6]  E. White,et al.  Cortical modules in the posteromedial barrel subfield (Sml) of the mouse , 1993, The Journal of comparative neurology.

[7]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[8]  Louis K. Scheffer,et al.  Fully-Automatic Synapse Prediction and Validation on a Large Data Set , 2016, Front. Neural Circuits.

[9]  Philipp Otto,et al.  webKnossos: efficient online 3D data annotation for connectomics , 2017, Nature Methods.

[10]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[11]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[12]  B. S. Manjunath,et al.  Synapse classification and localization in Electron Micrographs , 2014, Pattern Recognit. Lett..

[13]  Ullrich Köthe,et al.  Ilastik: Interactive learning and segmentation toolkit , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[14]  Fred A. Hamprecht,et al.  Automated Detection and Segmentation of Synaptic Contacts in Nearly Isotropic Serial Electron Microscopy Images , 2011, PloS one.

[15]  Fred A. Hamprecht,et al.  Who Is Talking to Whom: Synaptic Partner Detection in Anisotropic Volumes of Insect Brain , 2015, MICCAI.

[16]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[17]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[18]  Moritz Helmstaedter,et al.  A Barrel-Related Interneuron in Layer 4 of Rat Somatosensory Cortex with a High Intrabarrel Connectivity , 2013, Cerebral cortex.

[19]  Moritz Helmstaedter,et al.  SegEM: Efficient Image Analysis for High-Resolution Connectomics , 2015, Neuron.

[20]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[21]  Kevin L. Briggman,et al.  Extracellular space preservation aids the connectomic analysis of neural circuits , 2015, eLife.

[22]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[23]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[24]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[25]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[26]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[27]  Fred A. Hamprecht,et al.  Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks , 2014, PloS one.

[28]  Mark H. Ellisman,et al.  A workflow for the automatic segmentation of organelles in electron microscopy image stacks , 2014, Front. Neuroanat..

[29]  W. Denk,et al.  High-resolution whole-brain staining for electron microscopic circuit reconstruction , 2015, Nature Methods.

[30]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[31]  Moritz Helmstaedter,et al.  Synaptic Conductance Estimates of the Connection Between Local Inhibitor Interneurons and Pyramidal Neurons in Layer 2/3 of a Cortical Column , 2015, Cerebral cortex.

[32]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[33]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[34]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[35]  W. Denk,et al.  Staining and embedding the whole mouse brain for electron microscopy , 2012, Nature Methods.

[36]  Moritz Helmstaedter,et al.  Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. , 2008, Cerebral cortex.

[37]  Concha Bielza,et al.  Three-Dimensional Spatial Distribution of Synapses in the Neocortex: A Dual-Beam Electron Microscopy Study , 2013, Cerebral cortex.

[38]  Patrick van der Smagt,et al.  SynEM: Automated synapse detection for connectomics , 2017, bioRxiv.

[39]  T. Sejnowski,et al.  Nanoconnectomic upper bound on the variability of synaptic plasticity , 2015, eLife.

[40]  Pascal Fua,et al.  Learning Context Cues for Synapse Segmentation , 2013, IEEE Transactions on Medical Imaging.

[41]  M. Helmstaedter,et al.  Large-volume en-bloc staining for electron microscopy-based connectomics , 2015, Nature Communications.

[42]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[43]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[44]  G. Urban,et al.  Automated synaptic connectivity inference for volume electron microscopy , 2017, Nature Methods.

[45]  Giulio Tononi,et al.  Ultrastructural evidence for synaptic scaling across the wake/sleep cycle , 2017, Science.

[46]  M. Helmstaedter Cellular-resolution connectomics: challenges of dense neural circuit reconstruction , 2013, Nature Methods.

[47]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[48]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[49]  Toufiq Parag,et al.  Annotating Synapses in Large EM Datasets , 2014, ArXiv.

[50]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[51]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[52]  Javier DeFelipe,et al.  A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain , 2016, Neuroinformatics.