Discrimination between active and passive head movements by macaque ventral and medial intraparietal cortex neurons

An important prerequisite for effective motor action is the discrimination between active and passive body movements. Passive movements often require immediate reflexes, whereas active movements may demand suppression of the latter. The vestibular system maintains correct body and head posture in space through reflexes. Since vestibular inputs have been reported to be largely suppressed in the vestibular nuclei during active head movements, we investigated whether head movement‐related signals in the primate parietal cortex, a brain region involved in self‐motion perception, could support both reflex functions and self‐movement behaviour. We employed a paradigm that made available direct comparison of neuronal discharge under active and passive movement conditions. In this study, we demonstrate that a population of intraparietal (VIP (ventral) and MIP (medial)) cortex neurons change their preferred directions during horizontal head rotations depending on whether animals have performed active movements, or if they were moved passively. In other neurons no such change occurred. A combination of these signals would provide differential information about the active or passive nature of an ongoing movement. Moreover, some neurons' responses clearly anticipated the upcoming active head movement, providing a possible basis for vestibular‐related reflex suppression. Intraparietal vestibular neurons thus distinguish between active and passive head movements, and their responses differ substantially from those reported in brainstem vestibular neurons, regarding strength, timing, and direction selectivity. We suggest that the contextual firing characteristics of these neurons have far‐reaching implications for the suppression of reflex movements during active movement, and for the representation of space during self‐movement.

[1]  Jefferson E. Roy,et al.  Selective Processing of Vestibular Reafference during Self-Generated Head Motion , 2001, The Journal of Neuroscience.

[2]  Dora E Angelaki,et al.  Visual and Nonvisual Contributions to Three-Dimensional Heading Selectivity in the Medial Superior Temporal Area , 2006, The Journal of Neuroscience.

[3]  S. Votaw,et al.  Roles of primate spinal interneurons in preparation and execution of voluntary hand movement , 2002, Brain Research Reviews.

[4]  Hilary W. Heuer,et al.  Parietal Area VIP Neuronal Responses to Heading Stimuli Are Encoded in Head-Centered Coordinates , 2004, Neuron.

[5]  U. Büttner,et al.  Vestibular projections to the monkey thalamus: An autoradiographic study , 1979, Brain Research.

[6]  S. Faugier-Grimaud,et al.  Projections of the temporo-parietal cortex on vestibular complex in the macaque monkey (Macaca fascicularis) , 2004, Experimental Brain Research.

[7]  W. Graf,et al.  Functional anatomy of the head-neck movement system of quadrupedal and bipedal mammals. , 1995, Journal of anatomy.

[8]  K. Zilles,et al.  Differential Involvement of Parietal and Precentral Regions in Movement Preparation and Motor Intention , 2002, The Journal of Neuroscience.

[9]  K. Schaefer,et al.  Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus , 2004, Archiv für Psychiatrie und Nervenkrankheiten.

[10]  S. Faugier-Grimaud,et al.  Effects of posterior parietal lesions (area 7) on VOR in monkeys , 2004, Experimental Brain Research.

[11]  François Klam,et al.  Vestibular response kinematics in posterior parietal cortex neurons of macaque monkeys , 2003, The European journal of neuroscience.

[12]  Edward J Golob,et al.  Passive movements of the head do not abolish anticipatory firing properties of head direction cells. , 2005, Journal of neurophysiology.

[13]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[14]  J. Murphy,et al.  Spatial organization of precentral cortex in awake primates. III. Input-output coupling. , 1978, Journal of neurophysiology.

[15]  K E Cullen,et al.  Passive Activation of Neck Proprioceptive Inputs Does Not Influence the Discharge Patterns of Vestibular Nuclei Neurons , 2001, Annals of the New York Academy of Sciences.

[16]  A. Rubens Caloric stimulation and unilateral visual neglect , 1985, Neurology.

[17]  R. McCrea,et al.  Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation. , 1999, Journal of neurophysiology.

[18]  Hisao Nishijo,et al.  The relationship between monkey hippocampus place-related neural activity and action in space , 1997, Neuroscience Letters.

[19]  M. Perenin,et al.  Temporary remission of representational hemineglect through vestibular stimulation. , 1994, Neuroreport.

[20]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[21]  T. Mergner,et al.  Canal-neck interaction in vestibular nuclear neurons of the cat , 2004, Experimental Brain Research.

[22]  F Bremmer,et al.  Stages of self-motion processing in primate posterior parietal cortex. , 2000, International review of neurobiology.

[23]  P. Haggard,et al.  Altered awareness of voluntary action after damage to the parietal cortex , 2004, Nature Neuroscience.

[24]  Kathleen E Cullen,et al.  Semicircular Canal Afferents Similarly Encode Active and Passive Head-On-Body Rotations: Implications for the Role of Vestibular Efference , 2002, The Journal of Neuroscience.

[25]  G T Gdowski,et al.  Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons. , 1999, Journal of neurophysiology.

[26]  V. Henn,et al.  Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation , 1977, Experimental Brain Research.

[27]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[28]  E. Save,et al.  Hippocampal‐parietal cortical interactions in spatial cognition , 2000, Hippocampus.

[29]  G. Luppino,et al.  Parietofrontal Circuits for Action and Space Perception in the Macaque Monkey , 2001, NeuroImage.

[30]  François Klam,et al.  Vestibular Signals of Posterior Parietal Cortex Neurons during Active and Passive Head Movements in Macaque Monkeys , 2003, Annals of the New York Academy of Sciences.

[31]  R. Andersen,et al.  Intention-related activity in the posterior parietal cortex: a review , 2000, Vision Research.

[32]  Richard S. J. Frackowiak,et al.  Knowing where and getting there: a human navigation network. , 1998, Science.

[33]  U Büttner,et al.  The vestibulocortical pathway: neurophysiological and anatomical studies in the monkey. , 1979, Progress in brain research.

[34]  Jefferson E. Roy,et al.  Signal processing in the vestibular system during active versus passive head movements. , 2004, Journal of neurophysiology.

[35]  S. Matsuo,et al.  Ascending projections of posterior canal-activated excitatory and inhibitory secondary vestibular neurons to the mesodiencephalon in cats , 2004, Experimental Brain Research.

[36]  M. Wexler,et al.  Voluntary Head Movement and Allocentric Perception of Space , 2003, Psychological science.

[37]  J Duysens,et al.  Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. , 1996, Journal of neurophysiology.

[38]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[39]  C. Gross,et al.  Visuospatial properties of ventral premotor cortex. , 1997, Journal of neurophysiology.

[40]  S. Matsuo,et al.  Posterior canal-activated vestibulocortical pathways in cats , 1995, Neuroscience Letters.

[41]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[42]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[43]  E. Fetz,et al.  Sensory and motor responses of precentral cortex cells during comparable passive and active joint movements. , 1980, Journal of neurophysiology.

[44]  J. Duysens,et al.  Responses of neurons in area VIP to self-induced and external visual motion , 2002, Experimental Brain Research.

[45]  V. Henn,et al.  Vestibular-related neuronal activity in the thalamus of the alert monkey during sinusoidal rotation in the dark , 1977, Experimental Brain Research.

[46]  J. Maunsell,et al.  Attentional Modulation of Behavioral Performance and Neuronal Responses in Middle Temporal and Ventral Intraparietal Areas of Macaque Monkey , 2002, The Journal of Neuroscience.

[47]  Marianne Dieterich,et al.  Spatial neglect--a vestibular disorder? , 2006, Brain : a journal of neurology.

[48]  Kikuro Fukushima,et al.  Corticovestibular interactions: anatomy, electrophysiology, and functional considerations , 1997, Experimental Brain Research.

[49]  Robert A McCrea,et al.  Firing behaviour of squirrel monkey eye movement‐related vestibular nucleus neurons during gaze saccades , 2003, The Journal of physiology.

[50]  W. Graf,et al.  Oculomotor Areas of the Primate Frontal Lobes: A Transneuronal Transfer of Rabies Virus and [14C]-2-Deoxyglucose Functional Imaging Study , 2004, The Journal of Neuroscience.

[51]  K. Hoffmann,et al.  Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements , 2003, The Journal of physiology.

[52]  J. Duysens,et al.  Responses in ventral intraparietal area of awake macaque monkey to optic flow patterns corresponding to rotation of planes in depth can be explained by translation and expansion effects , 1997, Visual Neuroscience.

[53]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[54]  K. Schaefer,et al.  Die Neuronenaktivität in der Formatio reticularis des Rhombencephalons beim vestibulären Nystagmus , 2005, Archiv für Psychiatrie und Nervenkrankheiten.

[55]  P. Thier,et al.  Posterior Parietal Cortex Neurons Encode Target Motion in World-Centered Coordinates , 2004, Neuron.

[56]  J. Dichgans,et al.  Visual input improves the speedometer function of the vestibular nuclei in the goldfish , 1973, Experimental Brain Research.

[57]  L. Young,et al.  Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. , 1974, Brain research.

[58]  W. Precht,et al.  Visual-vestibular responses in vestibular nuclear neurons in the intact and cerebellectomized, alert cat , 1979, Neuroscience.

[59]  P. Vuilleumier [Unilateral spatial neglect]. , 2003, Revue medicale de la Suisse romande.

[60]  A. Berthoz,et al.  The orientation of the cervical vertebral column in unrestrained awake animals , 1986, Experimental Brain Research.

[61]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[62]  J P Landolt,et al.  Vestibular nuclear neuron activity during active and passive head movement in the alert rhesus monkey. , 1987, Journal of neurophysiology.

[63]  Jefferson E. Roy,et al.  Vestibuloocular reflex signal modulation during voluntary and passive head movements. , 2002, Journal of neurophysiology.

[64]  J. Allum,et al.  Visual-vestibular interactions in the vestibular nuclei of the goldfish , 1976, Experimental Brain Research.

[65]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[66]  O J Grüsser,et al.  Localization and responses of neurones in the parieto‐insular vestibular cortex of awake monkeys (Macaca fascicularis). , 1990, The Journal of physiology.

[67]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[68]  R H Schor,et al.  Response of vestibular neurons to head rotations in vertical planes. III. Response of vestibulocollic neurons to vestibular and neck stimulation. , 1990, Journal of neurophysiology.

[69]  W. Graf,et al.  Horizontal eye movement networks in primates as revealed by retrograde transneuronal transfer of rabies virus: Differences in monosynaptic input to “slow” and “fast” abducens motoneurons , 2006, The Journal of comparative neurology.

[70]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[71]  S. Pappatà,et al.  Cortical control of optokinetic nystagmus in humans: a positron emission tomography study , 1999, Experimental Brain Research.

[72]  J. M. Fredrickson,et al.  Nucleus ventroposterior inferior (VPI) as the vestibular thalamic relay in the rhesus monkey I. Field potential investigation , 1974, Experimental Brain Research.

[73]  F Bremmer,et al.  Eye position encoding in the macaque ventral intraparietal area (VIP). , 1999, Neuroreport.

[74]  R. McCrea,et al.  Neck proprioceptive inputs to primate vestibular nucleus neurons , 2000, Experimental Brain Research.

[75]  Adonis Moschovakis,et al.  Density gradients of trans‐synaptically labeled collicular neurons after injections of rabies virus in the lateral rectus muscle of the rhesus monkey , 2002, The Journal of comparative neurology.

[76]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[77]  S. Matsuo,et al.  Posterior canal-activated excitatory vestibuloocular relay neurons participate in the vestibulocortical pathways in cats. , 1995, Acta oto-laryngologica. Supplementum.

[78]  Frank Bremmer,et al.  ã Federation of European Neuroscience Societies Heading encoding in the macaque ventral intraparietal area (VIP) , 2022 .

[79]  J. Driver,et al.  Do neck-proprioceptive and caloric-vestibular stimulation influence covert visual attention in normals, as they influence visual neglect? , 2001, Neuropsychologia.

[80]  Jefferson E. Roy,et al.  Dissociating Self-Generated from Passively Applied Head Motion: Neural Mechanisms in the Vestibular Nuclei , 2004, The Journal of Neuroscience.

[81]  A. Fuchs,et al.  Discharge properties of neurons in the monkey thalamus tested with angular acceleration, eye movement and visual stimuli , 1977, Experimental Brain Research.

[82]  F. Bremmer,et al.  An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans , 2005, Experimental Brain Research.

[83]  H. Karnath New insights into the functions of the superior temporal cortex , 2001, Nature Reviews Neuroscience.

[84]  Werner Graf,et al.  Mapping the oculomotor system: the power of transneuronal labelling with rabies virus , 2002, The European journal of neuroscience.

[85]  K P Schaefer,et al.  On the organization of neuronal circuits involved in the generation of the orientation response (visual graspreflex). , 1975, Fortschritte der Zoologie.