Recent Progress of Optoelectronic and All‐Optical Neuromorphic Devices: A Comprehensive Review of Device Structures, Materials, and Applications

[1]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[2]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[3]  Giacomo Indiveri,et al.  Integration of nanoscale memristor synapses in neuromorphic computing architectures , 2013, Nanotechnology.

[4]  Alan F. Benner,et al.  Exploitation of optical interconnects in future server architectures , 2005 .

[5]  Jian Shi,et al.  A correlated nickelate synaptic transistor , 2013, Nature Communications.

[6]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[7]  Bryan Ellis,et al.  Ultra-low Threshold electrically pumped quantum dot photonic crystal nanocavity laser , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[8]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[9]  Jianping Yao,et al.  Integrated microwave photonics , 2012, 1211.4114.

[10]  Joondong Kim,et al.  All-Oxide-Based Highly Transparent Photonic Synapse for Neuromorphic Computing. , 2018, ACS applied materials & interfaces.

[11]  M. S. Komar Data Rate Assessment on L2–L3 CPU Bus and Bus between CPU and RAM in Modern CPUs , 2017, Automatic Control and Computer Sciences.

[12]  C. Gamrat,et al.  An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse , 2009, 0907.2540.

[13]  Yongsuk Choi,et al.  Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing , 2019 .

[14]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[15]  Qing Wan,et al.  Artificial synapse network on inorganic proton conductor for neuromorphic systems. , 2014, Nature communications.

[16]  Shimeng Yu,et al.  Optoelectronic resistive random access memory for neuromorphic vision sensors , 2019, Nature Nanotechnology.

[17]  Sharath Sriram,et al.  Multifunctional Optoelectronics via Harnessing Defects in Layered Black Phosphorus , 2019, Advanced Functional Materials.

[18]  A. S. Zibrov,et al.  Photon-mediated interactions between quantum emitters in a diamond nanocavity , 2018, Science.

[19]  Xiao Wei Sun,et al.  A Versatile Light‐Switchable Nanorod Memory: Wurtzite ZnO on Perovskite SrTiO3 , 2013 .

[20]  Ling-an Kong,et al.  Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors , 2017 .

[21]  N. Kemp,et al.  Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices , 2019, Carbon.

[22]  Qing Liao,et al.  Construction and optoelectronic properties of organic one-dimensional nanostructures. , 2010, Accounts of chemical research.

[23]  Sae Woo Nam,et al.  Superconducting optoelectronic circuits for neuromorphic computing , 2016, ArXiv.

[24]  H-S Philip Wong,et al.  Artificial optic-neural synapse for colored and color-mixed pattern recognition , 2018, Nature Communications.

[25]  Mohammad Abu Raihan Miah,et al.  Frequency- and Power-Dependent Photoresponse of a Perovskite Photodetector Down to the Single-Photon Level. , 2020, Nano letters.

[26]  Masaya Notomi,et al.  Ultralow-power all-optical RAM based on nanocavities , 2012, Nature Photonics.

[27]  Run‐Wei Li,et al.  Organic Biomimicking Memristor for Information Storage and Processing Applications , 2016 .

[28]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[29]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[30]  Rohit Abraham John,et al.  Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing. , 2017, Small.

[31]  Ming Liu,et al.  Light-Gated Memristor with Integrated Logic and Memory Functions. , 2017, ACS nano.

[32]  Gunuk Wang,et al.  Photonic Organolead Halide Perovskite Artificial Synapse Capable of Accelerated Learning at Low Power Inspired by Dopamine‐Facilitated Synaptic Activity , 2018, Advanced Functional Materials.

[33]  Qihuang Gong,et al.  On-chip plasmon-induced transparency based on plasmonic coupled nanocavities , 2014, Scientific Reports.

[34]  Arindam Basu,et al.  Synergistic Gating of Electro‐Iono‐Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity , 2018, Advanced materials.

[35]  P. Ferraro,et al.  A skin-over-liquid platform with compliant microbumps actuated by pyro-EHD pressure , 2019, NPG Asia Materials.

[36]  Mazhar E. Nasir,et al.  Optoelectronic synapses based on hot-electron-induced chemical processes. , 2020, Nano letters.

[37]  N. Xu,et al.  Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy , 2011, IEEE Transactions on Electron Devices.

[38]  B. Ryu,et al.  Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors , 2011 .

[39]  Zhenan Bao,et al.  Stretchable organic optoelectronic sensorimotor synapse , 2018, Science Advances.

[40]  Jin Qi,et al.  An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair , 2019, NPG Asia Materials.

[41]  Jia Huang,et al.  A perovskite/organic semiconductor based photonic synaptic transistor for artificial visual system. , 2020, ACS applied materials & interfaces.

[42]  Meng He,et al.  Artificial Synapses Emulated by an Electrolyte‐Gated Tungsten‐Oxide Transistor , 2018, Advanced materials.

[43]  Jianwen Zhao,et al.  Optoelectronic Properties of Printed Photogating Carbon Nanotube Thin Film Transistors and Their Application for Light-Stimulated Neuromorphic Devices. , 2019, ACS applied materials & interfaces.

[44]  Frank H. L. Koppens,et al.  Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor , 2016, Nature Communications.

[45]  Yihong Wu,et al.  An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions , 2015, Advanced materials.

[46]  T. Tseng,et al.  One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications , 2013, Journal of Materials Science.

[47]  Liduo Wang,et al.  Solution processable small molecules for organic light-emitting diodes , 2010 .

[48]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[49]  Yong-Hoon Kim,et al.  Environment‐Adaptable Artificial Visual Perception Behaviors Using a Light‐Adjustable Optoelectronic Neuromorphic Device Array , 2019, Advanced materials.

[50]  Chang-Lyoul Lee,et al.  Multicolored Organic/Inorganic Hybrid Perovskite Light‐Emitting Diodes , 2015, Advanced materials.

[51]  Masaya Notomi,et al.  Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip , 2014, Nature Photonics.

[52]  Weisheng Zhao,et al.  Two‐Terminal Carbon Nanotube Programmable Devices for Adaptive Architectures , 2010, Advanced materials.

[53]  Richard C. Atkinson,et al.  Human Memory: A Proposed System and its Control Processes , 1968, Psychology of Learning and Motivation.

[54]  Yao Wang,et al.  A scalable photonic computer solving the subset sum problem , 2020, Science Advances.

[55]  M. Cecchini,et al.  High MHC-II expression in Epstein–Barr virus-associated gastric cancers suggests that tumor cells serve an important role in antigen presentation , 2020, Scientific Reports.

[56]  Catherine E. Graves,et al.  Memristor‐Based Analog Computation and Neural Network Classification with a Dot Product Engine , 2018, Advanced materials.

[57]  Jang‐Sik Lee,et al.  Synergistic Improvement of Long‐Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia‐Based Oxide‐Semiconductor Transistors , 2020, Advanced materials.

[58]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[59]  Joondong Kim,et al.  Transparent and flexible photonic artificial synapse with piezo-phototronic modulator: Versatile memory capability and higher order learning algorithm , 2019, Nano Energy.

[60]  Xing-jie Liang,et al.  Y2O3 Nanoparticles Caused Bone Tissue Damage by Breaking the Intracellular Phosphate Balance in Bone Marrow Stromal Cells. , 2018, ACS nano.

[61]  M. Notomi,et al.  All-Optical InAsP/InP Nanowire Switches Integrated in a Si Photonic Crystal , 2020 .

[62]  Rong Zhang,et al.  A light-stimulated synaptic device based on graphene hybrid phototransistor , 2017 .

[63]  J. Montgomery,et al.  Discrete synaptic states define a major mechanism of synapse plasticity , 2004, Trends in Neurosciences.

[64]  Philippe Lalanne,et al.  Photon confinement in photonic crystal nanocavities , 2008 .

[65]  Yidong Xia,et al.  MoS2-based Charge-trapping synaptic device with electrical and optical modulated conductance , 2020 .

[66]  Adam Z. Stieg,et al.  Neuromorphic Atomic Switch Networks , 2012, PloS one.

[67]  P. Xiang,et al.  Nonvolatile Negative Optoelectronic Memory Based on Ferroelectric Thin Films , 2020 .

[68]  Li Jiang,et al.  Memristive Synapses with Photoelectric Plasticity Realized in ZnO1-x/AlOy Heterojunction. , 2018, ACS applied materials & interfaces.

[69]  Yingli Chu,et al.  Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors. , 2018, ACS applied materials & interfaces.

[70]  P. Ajayan,et al.  Room temperature 2D memristive transistor with optical short-term plasticity , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[71]  Hua Xu,et al.  High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. , 2014, Small.

[72]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[73]  Li Qiang Zhu,et al.  Restickable Oxide Neuromorphic Transistors with Spike‐Timing‐Dependent Plasticity and Pavlovian Associative Learning Activities , 2018, Advanced Functional Materials.

[74]  J. Feldmann,et al.  All-optical spiking neurosynaptic networks with self-learning capabilities , 2019, Nature.

[75]  W. Lu,et al.  Optogenetics-Inspired Tunable Synaptic Functions in Memristors. , 2018, ACS nano.

[76]  Xubing Lu,et al.  An Artificial Optoelectronic Synapse Based on a Photoelectric Memcapacitor , 2019, Advanced Electronic Materials.

[77]  Masaya Notomi,et al.  Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. , 2005, Optics letters.

[78]  Masaya Notomi,et al.  Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect , 2006 .

[79]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[80]  Xuedong Wang,et al.  Tunable morphology of the self-assembled organic microcrystals for the efficient laser optical resonator by molecular modulation. , 2014, Journal of the American Chemical Society.

[81]  S. Park,et al.  Multi-spectral gate-triggered heterogeneous photonic neuro-transistors for power-efficient brain-inspired neuromorphic computing , 2019 .

[82]  K. Cherenack,et al.  The Effects of Mechanical Bending and Illumination on the Performance of Flexible IGZO TFTs , 2011, IEEE Transactions on Electron Devices.

[83]  Volker J. Sorger,et al.  A Universal Multi-Hierarchy Figure-of-Merit for On-Chip Computing and Communications , 2016, ArXiv.

[84]  Su‐Ting Han,et al.  Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing , 2018, Advanced materials.

[85]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[86]  Lin Gan,et al.  Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS2. , 2018, Small.

[87]  Qing Wan,et al.  Flexible Neuromorphic Architectures Based on Self-Supported Multiterminal Organic Transistors. , 2018, ACS applied materials & interfaces.

[88]  Marin Alexe,et al.  Artificial Optoelectronic Synapses Based on Ferroelectric Field-Effect Enabled 2D Transition Metal Dichalcogenide Memristive Transistors. , 2019, ACS nano.

[89]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[90]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[91]  Sharath Sriram,et al.  Optically Stimulated Artificial Synapse Based on Layered Black Phosphorus. , 2019, Small.

[92]  T. Satoh,et al.  High‐Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod–Coil Materials as a Floating Gate , 2020, Advances in Materials.

[93]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[94]  J. Choi,et al.  Layer‐Number‐Dependent Electronic and Optoelectronic Properties of 2D WSe2‐Organic Hybrid Heterojunction , 2019, Advanced Materials Interfaces.

[95]  Weitong Wu,et al.  Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation , 2019, Nano Energy.

[96]  Yi Shi,et al.  An Optically Modulated Organic Schottky‐Barrier Planar‐Diode‐Based Artificial Synapse , 2020, Advanced Optical Materials.

[97]  Yongsuk Choi,et al.  Optoelectronic Synapse Based on IGZO‐Alkylated Graphene Oxide Hybrid Structure , 2018, Advanced Functional Materials.

[98]  M. Ericson,et al.  DNA biochip using a phototransistor integrated circuit. , 1999, Analytical chemistry.

[99]  Volker J. Sorger,et al.  Integrated Nanocavity Plasmon Light Sources for On-Chip Optical Interconnects , 2016 .

[100]  B. Pradhan,et al.  Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice , 2020, Science Advances.

[101]  Fu Liu,et al.  Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves , 2020, Nature Communications.

[102]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[103]  S. Kim,et al.  Surface modification of metal oxide using ionic liquid molecules in hybrid organic–inorganic optoelectronic devices , 2011 .

[104]  Yong‐Hoon Kim,et al.  Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity , 2017, Advanced materials.