Extracting Structure from Optical Flow Using the Fast Error Search Technique

AbstractIn this paper, we present a globally optimal and computationally efficient technique for estimating the focus of expansion (FOE) of an optical flow field, using fast partial search. For each candidate location on a discrete sampling of the image area, we generate a linear system of equations for determining the remaining unknowns, viz. rotation and inverse depth. We compute the least squares error of the system without actually solving the equations, to generate an error surface that describes the goodness of fit across the hypotheses. Using Fourier techniques, we prove that given an N × N flow field, the FOE, and subsequently rotation and structure, can be estimated in $$\mathcal{O}(N^2 \log N)$$ operations. Since the resulting system is linear, bounded perturbations in the data lead to bounded errors.We support the theoretical development and proof of our technique with experiments on synthetic and real data. Through a series of experiments on synthetic data, we prove the correctness, robustness and operating envelope of our algorithm. We demonstrate the utility of our technique by applying it for detecting obstacles from a monocular sequence of images.

[1]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[2]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[3]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[4]  Allen M. Waxman,et al.  Surface Structure and Three-Dimensional Motion from Image Flow Kinematics , 1985 .

[5]  J. Gibson The perception of the visual world , 1951 .

[6]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[7]  Berthold K. P. Horn,et al.  Direct methods for recovering motion , 1988, International Journal of Computer Vision.

[8]  Rama Chellappa,et al.  Robust Modeling and Estimation of Optical Flow with Overlapped Basis Functions. , 1996 .

[9]  Berthold K. P. Horn,et al.  Passive navigation , 1982, Comput. Vis. Graph. Image Process..

[10]  J. Gibson Optical motions and transformations as stimuli for visual perception. , 1957, Psychological review.

[11]  David R. Nadeau,et al.  The Vrml Sourcebook , 1996 .

[12]  Laveen N. Kanal,et al.  3-D Motion Estimation from Motion Field , 1995, Artif. Intell..

[13]  Thomas S. Huang,et al.  Correction to "Estimating 3-D motion parameters of a rigid planar patch,II: Singular value decomposition" , 1983 .

[14]  Thomas S. Huang,et al.  Motion and Structure from Image Sequences , 1992 .

[15]  Eero P. Simoncelli Distributed representation and analysis of visual motion , 1993 .

[16]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Larry S. Davis,et al.  What can projections of flow fields tell us about the visual motion , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[18]  Xinhua Zhuang,et al.  A simplified linear optic flow-motion algorithm , 1988, Comput. Vis. Graph. Image Process..

[19]  William H. Press,et al.  Numerical recipes in C , 2002 .

[20]  K. Prazdny Determining The Instantaneous Direction Of Motion From Optical Flow Generated By A Curvilinearly Moving Observer , 1981, Other Conferences.

[21]  Gilad Adiv,et al.  Inherent Ambiguities in Recovering 3-D Motion and Structure from a Noisy Flow Field , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  Allan D. Jepson,et al.  Linear subspace methods for recovering translational direction , 1994 .

[24]  Rama Chellappa,et al.  Statistical Analysis of Inherent Ambiguities in Recovering 3-D Motion from a Noisy Flow Field , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[26]  Yiannis Aloimonos,et al.  On the Geometry of Visual Correspondence , 1997, International Journal of Computer Vision.

[27]  A. Mitiche Computational Analysis of Visual Motion , 1994, Advances in Computer Vision and Machine Intelligence.

[28]  Shahriar Negahdaripour,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004 .

[29]  Daryl T. Lawton,et al.  Processing translational motion sequences , 1983, Comput. Vis. Graph. Image Process..

[30]  H. Wallach,et al.  The kinetic depth effect. , 1953, Journal of experimental psychology.

[31]  A. J. Batista-Leyva,et al.  On the interpretation of , 2004 .

[32]  A. Tits,et al.  Feasible Sequential Quadratic Programming for Finely Discretized Problems from SIP , 1998 .

[33]  Rama Chellappa,et al.  Electronic Stabilization and Feature Tracking in Long Image Sequences , 1995 .

[34]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[36]  Yiannis Aloimonos,et al.  Qualitative egomotion , 1995, International Journal of Computer Vision.

[37]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[38]  John Oliensis,et al.  A Critique of Structure-from-Motion Algorithms , 2000, Comput. Vis. Image Underst..

[39]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch , 1981 .

[40]  Allen M. Waxman,et al.  Closed-form solutions to image flow equations for 3D structure and motion , 1988, International Journal of Computer Vision.