A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)

Abstract Dynamic oscillatory shear tests are common in rheology and have been used to investigate a wide range of soft matter and complex fluids including polymer melts and solutions, block copolymers, biological macromolecules, polyelectrolytes, surfactants, suspensions, emulsions and beyond. More specifically, small amplitude oscillatory shear (SAOS) tests have become the canonical method for probing the linear viscoelastic properties of these complex fluids because of the firm theoretical background [1–4] and the ease of implementing suitable test protocols. However, in most processing operations the deformations can be large and rapid: it is therefore the nonlinear material properties that control the system response. A full sample characterization thus requires well-defined nonlinear test protocols. Consequently there has been a recent renewal of interest in exploiting large amplitude oscillatory shear (LAOS) tests to investigate and quantify the nonlinear viscoelastic behavior of complex fluids. In terms of the experimental input, both LAOS and SAOS require the user to select appropriate ranges of strain amplitude ( γ 0 ) and frequency ( ω ). However, there is a distinct difference in the analysis of experimental output, i.e. the material response. At sufficiently large strain amplitude, the material response will become nonlinear in LAOS tests and the familiar material functions used to quantify the linear behavior in SAOS tests are no longer sufficient. For example, the definitions of the linear viscoelastic moduli G ′( ω ) and G ″( ω ) are based inherently on the assumption that the stress response is purely sinusoidal (linear). However, a nonlinear stress response is not a perfect sinusoid and therefore the viscoelastic moduli are not uniquely defined; other methods are needed for quantifying the nonlinear material response under LAOS deformation. In the present review article, we first summarize the typical nonlinear responses observed with complex fluids under LAOS deformations. We then introduce and critically compare several methods that quantify the nonlinear oscillatory stress response. We illustrate the utility and sensitivity of these protocols by investigating the nonlinear response of various complex fluids over a wide range of frequency and amplitude of deformation, and show that LAOS characterization is a rigorous test for rheological models and advanced quality control.

[1]  Christopher W. Macosko,et al.  Rheology: Principles, Measurements, and Applications , 1994 .

[2]  W. Philippoff Vibrational Measurements with Large Amplitudes , 1966 .

[3]  S. Onogi,et al.  Non‐Linear Behavior of Viscoelastic Materials. I. Disperse Systems of Polystyrene Solution and Carbon Black , 1970 .

[4]  P. Carreau,et al.  Rheological properties of peanut butter , 2001 .

[5]  D. Vlassopoulos,et al.  Nonlinear rheological response of phase separating polymer blends: Poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) , 2000 .

[6]  R. Larson Constitutive equations for polymer melts and solutions , 1988 .

[7]  D. Wirtz,et al.  Keratin Filament Suspensions Show Unique Micromechanical Properties* , 1999, The Journal of Biological Chemistry.

[8]  J. A. Powell,et al.  Application of a nonlinear phenomenological model to the oscillatory behavior of ER materials , 1995 .

[9]  S. Hatzikiriakos,et al.  Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies , 1991 .

[10]  P. Carreau,et al.  Rheological behavior of fiber-filled polymers under large amplitude oscillatory shear flow , 2008 .

[11]  J. Läuger,et al.  Differences between stress and strain control in the non-linear behavior of complex fluids , 2010 .

[12]  N. Aksel,et al.  Investigation of the solid–liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps , 2002 .

[13]  I. Krieger,et al.  Oscillatory Shear of Nonlinear Fluids I. Preliminary Investigation , 1971 .

[14]  U. Wiesner,et al.  Microphase Reorientation in Block Copolymer Melts As Detected via FT Rheology and 2D SAXS , 2002 .

[15]  A. J. Giacomin,et al.  Structural network models for molten plastics evaluated in large amplitude oscillatory shear , 1992 .

[16]  J. Leblanc,et al.  Characterizing Gum Elastomers by Fourier Transform Rheometry , 2003 .

[17]  Tadashi Inoue,et al.  Rheological properties of poly(vinyl alcohol)/sodium borate aqueous solutions , 1993 .

[18]  K. Ahn,et al.  Prediction of normal stresses under large amplitude oscillatory shear flow , 2008 .

[19]  E. R. Rodger,et al.  Increasing the Force Torque Transducer Sensitivity of an RPA 2000 by a Factor 5 – 10 via Advanced Data Acquisition , 2004 .

[20]  G. Petekidis,et al.  Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS) , 2010 .

[21]  Strain-rate frequency superposition: a rheological probe of structural relaxation in soft materials. , 2006, Physical review letters.

[22]  J. Leblanc Fourier transform rheometry on carbon black filled polybutadiene compounds , 2006 .

[23]  N. Willenbacher,et al.  Characterization of polymer dispersions by Fourier transform rheology , 2001 .

[24]  K. Matyjaszewski,et al.  Rheooscillations of a Bottlebrush Polymer Solution Due to Shear-Induced Phase Transitions between a Shear Molten State and a Line Hexatic Phase , 2007 .

[25]  Mason,et al.  Elasticity of Compressed Emulsions. , 1995, Physical review letters.

[26]  C. Macosko,et al.  Nonlinear Dynamic Mechanical Moduli for Polycarbonate and PMMA , 1978 .

[27]  J. Harris Response of Time-dependent Materials to Oscillatory Motion , 1965, Nature.

[28]  R. Ewoldt,et al.  Large amplitude oscillatory shear flow of gluten dough: A model power-law gel , 2011 .

[29]  T. Hashimoto,et al.  Dynamic SAXS studies of sphere-forming block copolymers under large oscillatory shear deformation , 1994 .

[30]  Shear induced normal stress differences in aqueous foams , 2006, cond-mat/0609695.

[31]  K. Ahn,et al.  Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow , 2003 .

[32]  K. Ahn,et al.  A geometrical interpretation of large amplitude oscillatory shear response , 2005 .

[33]  Richard S. Graham,et al.  Neutron-Mapping Polymer Flow: Scattering, Flow Visualization, and Molecular Theory , 2003, Science.

[34]  T. Taniguchi,et al.  Melt rheology of long-chain-branched polypropylenes , 2006 .

[35]  K. Tam,et al.  Viscoelastic properties of hydrophobically modified alkali-soluble emulsion in salt solutions , 1999 .

[36]  G. Schlatter,et al.  Non Linear Rheology for Long Chain Branching characterization, comparison of two methodologies : Fourier Transform Rheology and Relaxation. , 2004 .

[37]  M. Wilhelm,et al.  Application of FT Rheology to Industrial Linear and Branched Polyethylene Blends , 2007 .

[38]  E. Linden,et al.  Rheological discrimination and characterization of carrageenans and starches by Fourier transform-rheology in the non-linear viscous regime , 2008 .

[39]  Nicholas W. Tschoegl,et al.  The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction , 1989 .

[40]  Andreas Acrivos,et al.  Shear‐Induced Structure in a Concentrated Suspension of Solid Spheres , 1980 .

[41]  J. Dealy,et al.  Frequency response of a shear stress transducer installed in a sliding plate rheometer , 1998 .

[42]  B. Debbaut,et al.  Large amplitude oscillatory shear and Fourier-transform rheology for a high-density polyethylene: Experiments and numerical simulation , 2002 .

[43]  J. Pople,et al.  Shear-induced orientation of the body-centered-cubic phase in a diblock copolymer gel , 1998 .

[44]  Kell Mortensen,et al.  Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution , 1993 .

[45]  Shi‐Qing Wang,et al.  Banding in entangled polymer fluids under oscillatory shearing. , 2006, Physical review letters.

[46]  K. Ahn,et al.  Large amplitude oscillatory shear as a way to classify the complex fluids , 2002 .

[47]  J. Leblanc Nonlinear viscoelastic characterization of molten thermoplastic vulcanizates (TPV) through large amplitude harmonic experiments , 2007 .

[48]  M. Wilhelm,et al.  Non-linear rheology of a face-centred cubic phase in a diblock copolymer gel , 2001 .

[49]  K. Ahn,et al.  Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts , 2007 .

[50]  Y. Aoki,et al.  Rheo-dielectric Behavior of Carbon Black Suspensions , 2001 .

[51]  S. Onogi,et al.  Nonlinear Viscoelastic Properties of Semisolid Emulsions , 1973 .

[52]  Yumi Matsumiya,et al.  Rheodielectric Behavior of Entangled cis-Polyisoprene under Fast Shear , 2002 .

[53]  M. Wilhelm,et al.  Polymer motion as detected via dielectric spectra of 1,4-cis-polyisoprene under large amplitude oscillatory shear (LAOS) , 2009 .

[54]  Daniel J. Klingenberg,et al.  Large amplitude oscillatory shear of ER suspensions , 1999 .

[55]  J. Leblanc Large Amplitude Oscillatory Shear Experiments to Investigate the Nonlinear Viscoelastic Properties of Highly Loaded Carbon Black Rubber Compounds Without Curatives , 2008 .

[56]  A. Yoshimura,et al.  Wall Slip Effects on Dynamic Oscillatory Measurements , 1988 .

[57]  J. Dealy,et al.  Sliding plate rheometer studies of concentrated polystyrene solutions: Large amplitude oscillatory shear of a very high molecular weight polymer in diethyl phthalate , 1996 .

[58]  G. McKinley,et al.  Probing shear-banding transitions of the VCM model for entangled wormlike micellar solutions using large amplitude oscillatory shear (LAOS) deformations , 2010 .

[59]  R. Keunings,et al.  On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear , 2004 .

[60]  Surendra N. Ganeriwala,et al.  Fourier transform mechanical analysis for determining the nonlinear viscoelastic properties of polymers , 1987 .

[61]  H. Janeschitz-Kriegl Polymer Melt Rheology and Flow Birefringence , 1982 .

[62]  Shi‐Qing Wang,et al.  A correlation between velocity profile and molecular weight distribution in sheared entangled polymer solutions , 2007 .

[63]  D. S. Pearson,et al.  Calculation of the nonlinear stress of polymers in oscillatory shear fields , 1982 .

[64]  M. T. Cidade,et al.  Evolution of morphological and rheological properties along the extruder length for blends of a commercial liquid crystalline polymer and polypropylene , 2004 .

[65]  P. Maffettone,et al.  A new methodology for the estimation of drop size distributions of dilute polymer blends based on LAOS flows , 2007 .

[66]  Manfred Wilhelm,et al.  The crossover between linear and non-linear mechanical behaviour in polymer solutions as detected by Fourier-transform rheology , 2000 .

[67]  T. Kotaka,et al.  Dielectric normal mode relaxation , 1993 .

[68]  Tomohiro Sato,et al.  Rheo-Dielectric behavior of low molecular weight liquid crystals. , 1998 .

[69]  D. V. Boger,et al.  Suspensions and polymers - Common links in rheology , 1999 .

[70]  Tomohiro Sato,et al.  Rheo-dielectric behavior of low molecular weight liquid crystal 2. Behavior of 8CB in nematic and smectic states , 1999 .

[71]  Ningqun Guo,et al.  Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear , 2003 .

[72]  A. Giacomin,et al.  Network theory for polymer solutions in large amplitude oscillatory shear , 2008 .

[73]  David J. Williams,et al.  Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities , 1984 .

[74]  A. Magnin,et al.  Experimental validation of steady shear and dynamic viscosity relation for yield stress fluids , 1997 .

[75]  R. Prud’homme,et al.  Rheology of Self‐Associating Concentrated Xanthan Solutions , 1984 .

[76]  L. Leibler,et al.  Rheological aging and rejuvenation in microgel pastes , 2000, Physical review letters.

[77]  K. Tam,et al.  Rheological properties of model alkali-soluble associative (HASE) polymers : Effect of varying hydrophobe chain length , 1997 .

[78]  M. Wilhelm,et al.  Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions , 2003 .

[79]  Gareth H. McKinley,et al.  Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. , 2007, Soft matter.

[80]  J. Karger‐Kocsis Techniques in rheological measurements: A. A. Collyer (Editor) Chapman and Hall, London, 1993, 343 pp., ISBN 0-412-53490-8, £69 , 1995 .

[81]  L. G. Leal,et al.  Comparison of dumbell-based theory and experiment for a dilute polymer solution in a corotating two-roll mill , 1999 .

[82]  I. Macdonald,et al.  Rheological behavior for large amplitude oscillatory motion , 1969 .

[83]  F. Lequeux,et al.  Nonlinear Rheology of Model Filled Elastomers , 2010 .

[84]  G. Grübel,et al.  Observation of new states of liquid crystal 8CB under nonlinear shear conditions as observed via a novel and unique rheology/small-angle X-ray scattering combination. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[85]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[86]  Sundaram Gunasekaran,et al.  NONLINEAR VISCOELASTICITY OF CHEESE , 1998 .

[87]  Manfred Wilhelm,et al.  High sensitivity Fourier-transform rheology , 1999 .

[88]  F. Bates,et al.  Time-resolved small-angle x-ray scattering measurements of a polymer bicontinuous microemulsion structure factor under shear. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Tadashi Inoue,et al.  Rheo-dielectrics in oligomeric and polymeric fluids: a review of recent findings , 2003 .

[90]  I. Alig,et al.  Destruction and formation of a carbon nanotube network in polymer melts: Rheology and conductivity spectroscopy , 2008 .

[91]  J. Dealy,et al.  Nonlinear Viscoelasticity of Polymer Melts , 1975 .

[92]  R. Ewoldt,et al.  On secondary loops in LAOS via self-intersection of Lissajous–Bowditch curves , 2010 .

[93]  P. Janmey,et al.  Nonlinear elasticity in biological gels , 2004, Nature.

[94]  M. Wilhelm,et al.  Distinguishing linear from star-branched polystyrene solutions with Fourier-transform rheology , 2004 .

[95]  M. Graham Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows , 1995 .

[96]  M. Wilhelm,et al.  Fourier-Transform-Rheology on linear polystyrene melts , 2001 .

[97]  D. Venerus,et al.  Finite amplitude oscillations of viscoelastic fluids , 1991 .

[98]  R. Larson Instabilities in viscoelastic flows , 1992 .

[99]  Sarah Köster,et al.  Rapid prototyping of X-ray microdiffraction compatible continuous microflow foils. , 2007, Small.

[100]  K. Tam,et al.  Superposition of Oscillations on Steady Shear Flow as a Technique for Investigating the Structure of Associative Polymers , 1997 .

[101]  M. Wilhelm,et al.  Kinetics of Shear Microphase Orientation and Reorientation in Lamellar Diblock and Triblock Copolymer Melts as Detected via FT-Rheology and 2D-SAXS , 2007 .

[102]  C. Balan,et al.  Determination of the non-linear parameter (mobility factor) of the Giesekus constitutive model using , 2010 .

[103]  Tadashi Inoue,et al.  Dielectric and Viscoelastic Study of Entanglement Dynamics: A Review of Recent Findings , 2005 .

[104]  Sirota,et al.  Nematic to smectic-A phase transition under shear flow: A nonequilibrium synchrotron x-ray study. , 1991, Physical review letters.

[105]  K. Ahn,et al.  First normal stress difference of entangled polymer solutions in large amplitude oscillatory shear flow , 2010 .

[106]  M. Bousmina,et al.  Note on the morphology determination in emulsions via rheology , 2006 .

[107]  M. Wilhelm,et al.  New developments for the mechanical characterization of materials , 2010 .

[108]  Mark Denny,et al.  The role of gastropod pedal mucus in locomotion , 1980, Nature.

[109]  Pier Luca Maffettone,et al.  Fourier Transform Rheology of Dilute Immiscible Polymer Blends: A Novel Procedure To Probe Blend Morphology , 2008 .

[110]  M. Wilhelm,et al.  Detection and quantification of industrial polyethylene branching topologies via Fourier-transform rheology, NMR and simulation using the Pom-pom model , 2006 .

[111]  R. Powell,et al.  RHEOLOGY OF SOLID PROPELLANT DISPERSIONS , 1991 .

[112]  Kyu Hyun,et al.  Establishing a New Mechanical Nonlinear Coefficient Q from FT-Rheology: First Investigation of Entangled Linear and Comb Polymer Model Systems , 2009 .

[113]  F. J. Holler,et al.  Principles of Instrumental Analysis , 1973 .

[114]  K. Ahn,et al.  Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification , 2003 .

[115]  Mason,et al.  Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. , 1995, Physical review letters.

[116]  G. Fredrickson The theory of polymer dynamics , 1996 .

[117]  C. Balan,et al.  Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response , 2007 .

[118]  A. R. Payne The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates. Part I , 1962 .

[119]  K. Ahn,et al.  Degree of branching of polypropylene measured from Fourier-transform rheology , 2006 .

[120]  K. Ahn,et al.  Large amplitude oscillatory shear behavior of the network model for associating polymeric systems , 2002 .

[121]  J. Burke,et al.  Dielectric Dispersion in Branched Polypropylene Oxides , 1969 .

[122]  S. Hatzikiriakos,et al.  Role of slip and fracture in the oscillating flow of HDPE in a capillary , 1992 .

[123]  A. J. Giacomin,et al.  The Transition to Quasi-Periodicity for Molten Plastics in Large Amplitude Oscillatory Shear , 1994 .

[124]  D. S. Pearson,et al.  Behavior of concentrated polystyrene solutions in large‐amplitude oscillating shear fields , 1982 .

[125]  R. Ewoldt,et al.  Non-linear viscoelasticity of hagfish slime , 2011 .

[126]  Olli Ikkala,et al.  In Situ Radial Small Angle Synchrotron X-ray Scattering Study of Shear-Induced Macroscopic Orientation of Hierarchically Structured Comb-Shaped Supramolecules , 2003 .

[127]  A. Gent,et al.  Nonlinearity in the Dynamic Properties of Vulcanized Rubber Compounds , 1954 .

[128]  S. Raghavan,et al.  Shear‐induced microstructural changes in flocculated suspensions of fumed silica , 1995 .

[129]  A. Hosoi,et al.  New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear , 2008 .

[130]  S. Onogi,et al.  Nonlinear Behavior of Viscoelastic Materials. II. The Method of Analysis and Temperature Dependence of Nonlinear Viscoelastic Functions , 1973 .

[131]  A. Nogales,et al.  Influence of Shear on the Templated Crystallization of Poly(butylene terephthalate)/Single Wall Carbon Nanotube Nanocomposites , 2008 .

[132]  A. Hosoi,et al.  Rheological Fingerprinting of Complex Fluids using Large Amplitude Oscillatory Shear (LAOS) Flow , 2007 .

[133]  M. T. Cidade,et al.  Evolution of the morphological and rheological properties along the extruder length for compatibilized blends of a commercial liquid‐crystalline polymer and polypropylene , 2006 .

[134]  J. Leblanc Investigating the Non-Linear Viscoelastic Behavior of Filled Rubber Compounds Through Fourier Transform Rheometry , 2005 .

[135]  P. Moldenaers,et al.  A kinetic network model for nonlinear flow behavior of molten plastics in both shear and extension , 1997 .

[136]  K. Ahn,et al.  Three-dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow , 2003 .

[137]  Shichang Wang,et al.  Nonlinear rheological behavior of diphenylmethylvinyl silicone gum: an example of homogeneous shear , 2009 .

[138]  A. Groisman,et al.  Elastic turbulence in a polymer solution flow , 2000, Nature.

[139]  Sebastian Rammensee,et al.  Negative normal stress in semiflexible biopolymer gels. , 2007, Nature materials.

[140]  C. Booth,et al.  Orientational Ordering of a Poly(oxyethylene)Poly(oxybutylene) Diblock Copolymer Gel under Steady Shear Flow , 1998 .

[141]  Kurt F. Wissbrun,et al.  Melt Rheology and Its Role in Plastics Processing: Theory and Applications , 1990 .

[142]  M. Wilhelm,et al.  Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[143]  D. Vlassopoulos,et al.  Frieze group analysis of asymmetric response to large-amplitude oscillatory shear , 2010 .

[144]  M. Wilhelm,et al.  Effect of large amplitude oscillatory shear (LAOS) on the dielectric response of 1,4-cis-polyisoprene , 2006 .

[145]  K. Ahn,et al.  Electrically Activated Poly(propylene)/Clay Nanocomposites , 2003 .

[146]  E. Dill,et al.  A phenomenological theory of streaming birefringence , 1970 .

[147]  A. Giacomin,et al.  Best fit for differential constitutive model parameters to non-linear oscillation data , 1993 .

[148]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .

[149]  T. Pakula,et al.  Applications of the rheo-dielectric technique , 2007 .

[150]  Manfred Wilhelm,et al.  Fourier-Transform rheology , 2002 .

[151]  Dagmar van Dusschoten,et al.  Increased torque transducer sensitivity via oversampling , 2001 .

[152]  Ian W. Hamley,et al.  Small-angle scattering of block copolymers: in the melt, solution and crystal states , 2004 .

[153]  A. Hosoi,et al.  Nonlinear viscoelastic biomaterials: meaningful characterization and engineering inspiration. , 2009, Integrative and comparative biology.

[154]  Wei Yu,et al.  General stress decomposition in nonlinear oscillatory shear flow , 2009 .

[155]  J. Leblanc Fourier transform rheometry on gum elastomers , 2003 .

[156]  H. Watanabe Dielectric relaxation of type-A polymers in melts and solutions , 2001 .

[157]  Willie E. Rochefort,et al.  Rheology of Xanthan Gum: Salt, Temperature, and Strain Effects in Oscillatory and Steady Shear Experiments , 1987 .

[158]  J. Leblanc,et al.  Updating a Torsional Dynamic Rheometer for Fourier Transform Rheometry on Rubber Materials , 2003 .

[159]  A. J. Giacomin,et al.  A sliding plate normal thrust rheometer for molten plastics , 1994 .

[160]  K. Ahn,et al.  A network model for predicting the shear thickening behavior of a poly (vinyl alcohol)—sodium borate aqueous solution , 1994 .

[161]  I. Hamley Structure and flow behaviour of block copolymers , 2001 .

[162]  K. Ahn,et al.  Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions , 2006 .

[163]  Combined rheometry and small-angle x-ray scattering , 2003 .

[164]  A. J. Giacomin,et al.  Validity of separable BKZ model for large amplitude oscillatory shear , 1993 .

[165]  D. Morse,et al.  Viscoelastic behavior of cubic phases in block copolymer melts , 1999 .

[166]  L. Sagis,et al.  Constitutive equations for an elastic material with anisotropic rigid particles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[167]  F. Bossard,et al.  Linear and nonlinear viscoelastic behavior of very concentrated plate-like kaolin suspensions , 2007 .

[168]  C. Gallegos,et al.  The rheological and microstructural characterisation of the non-linear flow behaviour of concentrated oil-in-water emulsions , 1999 .

[169]  Anne Ladegaard Skov,et al.  Large amplitude oscillatory extension of soft polymeric networks , 2010 .

[170]  G. Schlatter,et al.  Fourier Transform Rheology of Branched Polyethylene: Experiments and Models for Assessing the Macromolecular Architecture , 2005 .

[171]  J. Dealy,et al.  Large-Amplitude Oscillatory Shear , 1993 .

[172]  O. Ikkala,et al.  A modified rheometer for in-situ radial and tangential SAXS studies on shear-induced alignment , 2004 .

[173]  U. Wiesner Lamellar diblock copolymers under large amplitude oscillatory shear flow: order and dynamics , 1997 .

[174]  W. E. Stewart,et al.  Fluid inertia in large amplitude oscillatory shear , 1998 .

[175]  Julia A. Kornfield,et al.  Pathways to Macroscale Order in Nanostructured Block Copolymers , 1997 .

[176]  Wei Zhou,et al.  Control on the topological structure of polyolefin elastomer by reactive processing , 2009 .

[177]  Curtiss,et al.  Dynamics of Polymeric Liquids , .