The hysteretic features of ternary spins (1/2, 1, 3/2) idealized Ising nanoparticles on the core–multishell structure

[1]  M. Keskin,et al.  Magnetic features and compensation behaviors of a mixed spin (1/2, 1) Ising ferrimagnetic system on a hexagonal lattice , 2021 .

[2]  A. Kpadonou,et al.  The critical behaviors of a ferromagnetic–ferrimagnetic Ising ternary alloy with mixed spin-( 1/2, 3/2, 5/2) , 2021, The European Physical Journal Plus.

[3]  M. Bouziani,et al.  Phase diagrams and hysteresis behavior of the mixed spin-7/2 and spin-1/2 Ising model , 2021 .

[4]  R. Laamara,et al.  The magnetic properties and hysteresis loops of mixed spin-(3/2,2) hexagonal Ising nanowire system with alternate layers , 2021 .

[5]  G. M. Buendía,et al.  Monte Carlo Simulation of a Mixed Spin‐1/2 and Spin‐3/2 Ising Ferrimagnetic System with Site Dilution , 2021, physica status solidi (b).

[6]  M. Ertaş,et al.  Dynamic magnetic properties of a mixed ferro-ferrimagnetic ternary alloy in the form of ABpC1−p with single-ion anisotropy , 2021, Physica A: Statistical Mechanics and its Applications.

[7]  M. Keskin,et al.  Dynamic phase of transitions of the mixed spin (1/2, 3/2) Ising model in the presence of a time-varying magnetic field by using the path probability method , 2021 .

[8]  B. Deviren Nonequilibrium magnetic properties of the mixed spin (1/2, 1) Ising nanowire with core-shell structure , 2020 .

[9]  Min Yang,et al.  Magnetic behaviors in a ternary metallic nanoisland with bilayer hexagonal core-shell structure , 2019 .

[10]  M. Ertaş,et al.  Dynamic magnetic features of a mixed ferro-ferrimagnetic ternary alloy in the form of ABpC1−p , 2019, The European Physical Journal Plus.

[11]  E. Kantar The Magnetic Properties of the Spin-1 Ising Fullerene Cage with a Core-Shell Structure , 2019 .

[12]  Yi Yang,et al.  Magnetic and thermodynamic properties of a ternary metal nanoisland: A Monte Carlo study , 2019, Physica A: Statistical Mechanics and its Applications.

[13]  M. Batı Mixed Spin (1, 5/2) Ising Ferromagnetic Blume-Capel Model Under Time-Dependent Sinusoidal Magnetic Field: an Effective-Field Theory Analysis , 2018 .

[14]  M. Kerouad,et al.  The phase diagrams and the magnetic properties of a ternary mixed ferrimagnetic nanowire , 2017 .

[15]  Y. Yüksel,et al.  Dynamic phenomena in magnetic ternary alloys , 2016 .

[16]  E. Kantar The effects of the composition, temperature and geometry on the hysteretic properties of the Ising-type barcode nanowire , 2016 .

[17]  E. Kantar Hysteretic features of Ising-type segmented nanostructure with alternating magnetic wires , 2016 .

[18]  X. Ren,et al.  Analysis of Critical Dimensions for Nanowire Core-Multishell Heterostructures , 2015, Nanoscale Research Letters.

[19]  Tzu-ging Lin,et al.  Tailoring Optical and Plasmon Resonances in Core-shell and Core-multishell Nanowires for Visible Range Negative Refraction and Plasmonic Light Harvesting:A Review , 2015 .

[20]  M. Ertaş Hysteresis and Compensation Behaviors of Mixed Spin-1 and Spin-2 Hexagonal Ising Nanowire System , 2014, 1410.4636.

[21]  E. Kantar,et al.  Hexagonal Type Ising Nanowire with Spin-1 Core and Spin-2 Shell Structure , 2014, 1407.1147.

[22]  E. Kantar,et al.  Magnetic hysteresis and compensation behaviors in spin-1 bilayer Ising model , 2014 .

[23]  Hao Wang High gain single GaAs nanowire photodetector , 2013 .

[24]  M. Kerouad,et al.  Monte Carlo study of the magnetic behavior of a mixed spin (1, 3/2) ferrimagnetic nanoparticle , 2013 .

[25]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[26]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[27]  B. Deviren,et al.  Multicritical Dynamic Phase Diagrams and Dynamic Hysteresis Loops in a Mixed Spin-2 and Spin-5/2 Ising Ferrimagnetic System with Repulsive Biquadratic Coupling: Glauber Dynamic Approach , 2012 .

[28]  Zan Wang,et al.  Nanoparticle with a ferrimagnetic interlayer coupling in the presence of single-ion anisotropis , 2012 .

[29]  G. Landi Dynamic symmetry loss of high-frequency hysteresis loops in single-domain particles with uniaxial anisotropy , 2012 .

[30]  M. Kerouad,et al.  Monte Carlo simulation of the compensation and critical behaviors of a ferrimagnetic core/shell nanoparticle Ising model , 2010 .

[31]  R. Yimnirun,et al.  Frequency dependence of the Ising–hysteresis phase–diagram: Mean field analysis , 2010 .

[32]  B. Bai,et al.  Magnetic hysteresis loops in molecular-based magnetic materials AFeIIFeIII(C2O4)3 , 2010 .

[33]  A. Bertoni,et al.  Magnetic states in prismatic core multishell nanowires. , 2009, Nano letters.

[34]  Hui Mao,et al.  Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. , 2008, Small.

[35]  A. Nduwimana,et al.  Spatial carrier confinement in core-shell and multishell nanowire heterostructures. , 2008, Nano letters.

[36]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[37]  Eugene A. Irene,et al.  Electronic Properties of Materials , 2005 .

[38]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[39]  K. Hashimoto,et al.  DESIGN OF A NOVEL MAGNET EXHIBITING PHOTOINDUCED MAGNETIC POLE INVERSION BASED ON MOLECULAR FIELD THEORY , 1999 .

[40]  T. Kaneyoshi,et al.  Contribution to the new type of effective-field theory of the Ising model , 1979 .

[41]  M. Keskin,et al.  Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach , 2014 .

[42]  Yong Zhang,et al.  USE OF CORE/SHELL STRUCTURED NANOPARTICLES FOR BIOMEDICAL APPLICATIONS , 2008 .