Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis.

We show that highly nonlinear chalcogenide glass nanowire waveguides with near-zero anomalous dispersion should be capable of generating correlated photon-pairs by spontaneous four-wave mixing at frequencies detuned by over 17 THz from the pump where Raman noise is absent. In this region we predict a photon pair correlation of >100, a figure of merit >10 and brightness of ~8×10(8) pairs/s over a bandwidth of >15 THz in nanowires with group velocity dispersion of <5 ps∙km(-1) nm(-1). We present designs for double-clad Ge(11.5)As(24)Se(64.5) glass nanowires with realistic tolerance to fabrication errors that achieve near-zero anomalous dispersion at a 1420 nm pump wavelength. This structure has a fabrication tolerance of 80-170 nm in the waveguide width and utilizes a SiO(2)/Al(2)O(3) layer deposited by atomic layer deposition to compensate the fabrication errors in the film thickness.

[1]  C. M. Natarajan,et al.  Generation of correlated photon pairs in a chalcogenide As2S3 waveguide , 2010, 1011.1688.

[2]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[3]  H. Driel,et al.  Two-photon absorption and Kerr coefficients of silicon for 850–2200nm , 2007 .

[4]  B J Eggleton,et al.  Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides. , 2010, Optics express.

[5]  Steve Madden,et al.  Properties of GexAsySe1-x-y glasses for all-optical signal processing. , 2008, Optics express.

[6]  Jun Chen,et al.  All-fiber photon-pair source for quantum communications: Improved generation of correlated photons. , 2004 .

[7]  Steve Madden,et al.  Progress in optical waveguides fabricated from chalcogenide glasses. , 2010, Optics express.

[8]  Steve Madden,et al.  Net-gain from a parametric amplifier on a chalcogenide optical chip. , 2008, Optics express.

[9]  Steve Madden,et al.  Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm. , 2010, Optics express.

[10]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[11]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[12]  R. Leonhardt,et al.  Combined effect of Raman and parametric gain on single-pump parametric amplifiers. , 2007, Optics express.

[13]  H. Unger,et al.  Analysis of vectorial mode fields in optical waveguides by a new finite difference method , 1994 .

[14]  Qiang Lin,et al.  Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. , 2006, Optics express.

[15]  Feng Luan,et al.  Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals. , 2009, Optics express.

[16]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[17]  B. Luther-Davies,et al.  Interplay between Raman scattering and four-wave mixing in As_2S_3 chalcogenide glass waveguides , 2011 .

[18]  T. Murphy,et al.  Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides , 2008, Journal of Lightwave Technology.

[19]  N. Yoran,et al.  Deterministic linear optics quantum computation with single photon qubits. , 2003, Physical review letters.