Smoothly rising star formation histories during the reionization epoch

Cosmological hydrodynamic simulations robustly predict that high-redshift galaxy star formation histories (SFHs) are smoothly rising and vary with mass only by a scalefactor. We use our latest simulations to test whether this scenario can account for recent observations at z ≥ 6 from WFC3/IR, NICMOS and IRAC. Our simulations broadly reproduce the observed ultraviolet (UV) luminosity functions and stellar mass densities and their evolution at z = 6-8, all of which are non-trivial tests of the mean SFH. In agreement with observations, simulated galaxies possess blue UV continua owing to young ages (50-150 Myr), low metallicities (0.1-0.5 Z ⊙ ) and low dust columns [E(B - V) < 0.05]. Our predicted Balmer breaks at z = 7, while significant, are ≈0.5 mag weaker than observed even after accounting for nebular line emission, suggesting observational systematic errors and/or numerical resolution limitations. Observations imply a near-unity slope in the stellar mass-star formation rate relation at all z = 6-8, confirming the prediction that SFH shapes are invariant. Dust extinction suppresses the UV luminosity density by a factor of 2-3, with suppression increasing modestly to later times owing to increasing metallicities. Current surveys detect the majority of galaxies with stellar masses exceeding 10 9 M ⊙ and few galaxies less massive than 10 8.5 M ⊙ , implying that they probe no more than the brightest ≈30 per cent of the complete star formation and stellar mass densities at z ≥ 6. Finally, we demonstrate that there is no conflict between smoothly rising SFHs and recent clustering observations. This is because momentum-driven outflows suppress star formation in low-mass haloes such that the fraction of haloes hosting observable galaxies (the 'occupancy') is 0.2-0.4 even though the star formation duty cycle is unity. This leads to many interesting predictions at z ≥ 4, among them that (1) optically selected and UV-selected samples largely overlap; (2) few galaxies exhibit significantly suppressed specific star formation rates; and (3) occupancy is constant or increasing with decreasing luminosity. These predictions are in tentative agreement with current observations, but further analysis of existing and upcoming data sets is required in order to test them more thoroughly.

[1]  Oxford,et al.  How do galaxies acquire their mass , 2010, 1002.3257.

[2]  M. Franx,et al.  A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr , 2009, Nature.

[3]  H. Ferguson,et al.  The rising star formation histories of distant galaxies and implications for gas accretion with time , 2010, 1007.4554.

[4]  C. Conselice,et al.  Absence of evidence is not evidence of absence: the colour–density relation at fixed stellar mass persists to z∼ 1 , 2010, 1007.1967.

[5]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[6]  N. Gnedin EFFECT OF COSMIC ULTRAVIOLET BACKGROUND ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES , 2010, 1006.1903.

[7]  A. Cimatti,et al.  Star formation rates and masses of z∼ 2 galaxies from multicolour photometry , 2010, 1004.4546.

[8]  S. Okamura,et al.  STELLAR POPULATIONS OF Lyα EMITTERS AT z ∼ 6–7: CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS FROM GALAXY BUILDING BLOCKS , 2010, 1004.0963.

[9]  R. Bouwens,et al.  THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH , 2010, 1004.0384.

[10]  B. Ciardi,et al.  The transition from population III to population II-I star formation , 2010, 1003.4992.

[11]  R. Salvaterra,et al.  Simulating high‐redshift galaxies , 2010, 1003.3873.

[12]  D. Padgett,et al.  Specific star formation and the relation to stellar mass from 0 < z < 2 as seen in the far-infrared at 70 and 160 μm , 2010, 1003.2446.

[13]  D. Schaerer,et al.  On the physical properties of z ≈ 6–8 galaxies , 2010, 1002.1090.

[14]  Leiden,et al.  How is star formation quenched in massive galaxies , 2010, 1001.1734.

[15]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[16]  H. Ferguson,et al.  ON THE STELLAR POPULATIONS AND EVOLUTION OF STAR-FORMING GALAXIES AT 6.3 < z ⩽ 8.6 , 2009, 0912.1338.

[17]  M. Franx,et al.  STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.

[18]  R. O’Connell,et al.  Galaxy formation in the reionization epoch as hinted by wide field camera 3 observations of the hubble ultra deep field , 2009, 0910.0077.

[19]  G. Magdis,et al.  On the stellar masses of IRAC detected Lyman Break Galaxies at z∼ 3 , 2009, 0909.3950.

[20]  F. Mannucci,et al.  Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field , 2009, 0909.2853.

[21]  S. Cantalupo Stars quenching stars: how photoionization by local sources regulates gas cooling and galaxy formation , 2009, 0912.4149.

[22]  A. Dekel,et al.  On the origin of the galaxy star‐formation‐rate sequence: evolution and scatter , 2009, 0912.2169.

[23]  D. Weinberg,et al.  Feedback and recycled wind accretion: assembling the z= 0 galaxy mass function , 2009, 0912.0519.

[24]  M. Franx,et al.  ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION , 2009, 0910.0838.

[25]  Y.Tanaguchi,et al.  SPECTROSCOPY OF LUMINOUS z > 7 GALAXY CANDIDATES AND SOURCES OF CONTAMINATION IN z > 7 GALAXY SEARCHES , 2009, 0910.0444.

[26]  M. Franx,et al.  VERY BLUE UV-CONTINUUM SLOPE β OF LOW LUMINOSITY z ∼ 7 GALAXIES FROM WFC3/IR: EVIDENCE FOR EXTREMELY LOW METALLICITIES? , 2009, 0910.0001.

[27]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[28]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[29]  Mark Lacy,et al.  The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.

[30]  J. Dunlop,et al.  Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF , 2009, 0909.2437.

[31]  M. Franx,et al.  DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.

[32]  R. Bouwens,et al.  z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.

[33]  R. Bouwens,et al.  STELLAR MASSES OF LYMAN BREAK GALAXIES, Lyα EMITTERS, AND RADIO GALAXIES IN OVERDENSE REGIONS AT z = 4–6 , 2009, 0909.1082.

[34]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[35]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[36]  J. Lee,et al.  On the interstellar medium and star formation demographics of galaxies in the local universe , 2009, 0908.1122.

[37]  Stsci,et al.  METAL-FREE GAS SUPPLY AT THE EDGE OF REIONIZATION: LATE-EPOCH POPULATION III STAR FORMATION , 2009, 0905.4504.

[38]  D. Schaerer,et al.  The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.

[39]  D. Thompson,et al.  STAR FORMATION AND DUST OBSCURATION AT z ≈ 2: GALAXIES AT THE DAWN OF DOWNSIZING , 2009, 0905.1674.

[40]  R. Bouwens,et al.  BRIGHT STRONGLY LENSED GALAXIES AT REDSHIFT z ∼ 6–7 BEHIND THE CLUSTERS ABELL 1703 AND CL0024+16 , 2009, 0903.3988.

[41]  H. Rix,et al.  HISTORY OF GALAXY INTERACTIONS AND THEIR IMPACT ON STAR FORMATION OVER THE LAST 7 Gyr FROM GEMS , 2009, 0903.3700.

[42]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[43]  A. Cimatti,et al.  Searching for massive galaxies at z ≥ 3.5 in GOODS-North , 2009, 0901.3341.

[44]  K. Finlator,et al.  Tracing the re-ionization-epoch intergalactic medium with metal absorption lines , 2009, 0901.0286.

[45]  A. Fontana,et al.  The physical properties of Lyα emitting galaxies: not just primeval galaxies? , 2008, 0811.1861.

[46]  R. Kennicutt,et al.  DWARF GALAXY STARBURST STATISTICS IN THE LOCAL VOLUME , 2008, 0810.5132.

[47]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[48]  R. Wechsler,et al.  MAPPING THE DARK MATTER FROM UV LIGHT AT HIGH REDSHIFT: AN EMPIRICAL APPROACH TO UNDERSTAND GALAXY STATISTICS , 2008, 0808.1727.

[49]  B. Oppenheimer,et al.  The nature and origin of low‐redshift O vi absorbers , 2008, 0806.2866.

[50]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[51]  J. Dunlop,et al.  The luminosity function, halo masses and stellar masses of luminous Lyman-break galaxies at redshifts 5 < z < 6 , 2008, 0805.1335.

[52]  J. Schaye,et al.  Photoheating and supernova feedback amplify each other's effect on the cosmic star formation rate , 2008, 0812.2913.

[53]  H. Dejonghe,et al.  Simulations of the formation and evolution of isolated dwarf galaxies , 2008, 1105.5634.

[54]  Liang Gao,et al.  Mass loss of galaxies due to an ultraviolet background , 2008, 0806.0378.

[55]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[56]  E. Zackrisson,et al.  The Impact of Nebular Emission on the Broadband Fluxes of High-Redshift Galaxies , 2008, 0802.3696.

[57]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[58]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[59]  A. Hopkins,et al.  The Evolution of Galaxy Mergers and Morphology at z < 1.2 in the Extended Groth Strip , 2006, astro-ph/0602088.

[60]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[61]  M. Franx,et al.  Discovery of a Very Bright Strongly Lensed Galaxy Candidate at z ≈ 7.6 , 2007, 0802.2506.

[62]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[63]  R. Dav'e The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? , 2007, 0710.0381.

[64]  S. White,et al.  Galaxy growth in the concordance ΛCDM cosmology , 2007, 0708.1814.

[65]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[66]  R. Schneider,et al.  Population III stars: hidden or disappeared? , 2007, 0707.1433.

[67]  Richard S. Ellis,et al.  A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range 8.5 < z < 10.4: New Constraints on the Contribution of Low-Luminosity Sources to Cosmic Reionization , 2007 .

[68]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[69]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[70]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[71]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[72]  A. Dekel,et al.  Bursting and quenching in massive galaxies without major mergers or AGNs , 2007, astro-ph/0703435.

[73]  I. Zehavi,et al.  Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.

[74]  Caltech,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[75]  Garching,et al.  Lyman-break galaxies at z ~ 5 – I. First significant stellar mass assembly in galaxies that are not simply z ~ 3 LBGs at higher redshift , 2007, astro-ph/0701725.

[76]  G. Stinson,et al.  The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body Simulations , 2006, astro-ph/0609620.

[77]  M. Lacy,et al.  The stellar mass density at z ~6 from Spitzer imaging of i'-drop galaxies , 2006, astro-ph/0607306.

[78]  J. Dunlop,et al.  A systematic search for very massive galaxies at z > 4 , 2006, astro-ph/0606192.

[79]  T. Greif,et al.  The First Stars , 2003, astro-ph/0311019.

[80]  G. Brammer,et al.  The Density and Spectral Energy Distributions of Red Galaxies at z ~ 3.7 , 2006, astro-ph/0611949.

[81]  Jia-Sheng Huang,et al.  The Stellar Population of Lyα-emitting Galaxies at z ~ 5.7 , 2006, astro-ph/0610572.

[82]  R. Bouwens,et al.  Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z ≈ 7 , 2006, astro-ph/0608444.

[83]  R. Davé,et al.  Constraints on physical properties of z ∼ 6 galaxies using cosmological hydrodynamic simulations , 2006, astro-ph/0607039.

[84]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[85]  A. Dekel,et al.  Natural downsizing in hierarchical galaxy formation , 2006, astro-ph/0605045.

[86]  The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey , 2006, astro-ph/0604554.

[87]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[88]  A. Dekel,et al.  Modelling the galaxy bimodality: shutdown above a critical halo mass , 2006, astro-ph/0601295.

[89]  K. Finlator,et al.  The physical properties and detectability of reionization-epoch galaxies , 2005, astro-ph/0511532.

[90]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[91]  R. Davé,et al.  The Physical and Photometric Properties of High-Redshift Galaxies in Cosmological Hydrodynamic Simulations , 2005, astro-ph/0507719.

[92]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[93]  Ranga-Ram Chary,et al.  Spitzer Constraints on the z = 6.56 Galaxy Lensed by Abell 370 , 2005, astro-ph/0510827.

[94]  H. Ferguson,et al.  The Large-Scale and Small-Scale Clustering of Lyman Break Galaxies at 3.5 ⩽ z ⩽ 5.5 from the GOODS Survey , 2005, astro-ph/0508090.

[95]  C. Conselice,et al.  Rest-Frame Ultraviolet-to-Optical Properties of Galaxies at z ≈ 6 and z ≈ 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer , 2005, astro-ph/0507673.

[96]  R. Bouwens,et al.  UV Continuum Spectroscopy of a 6L* z = 5.5 Starburst Galaxy , 2005, astro-ph/0507306.

[97]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[98]  Cambridge,et al.  Spitzer imaging of i′‐drop galaxies: old stars at z≈ 6 , 2005, astro-ph/0502385.

[99]  G. Zamorani,et al.  The B-Band Luminosity Function of Red and Blue Galaxies up to z = 3.5 , 2004, astro-ph/0412044.

[100]  A. Cimatti,et al.  The evolution of the galaxy B-band rest-frame morphology to z ∼ 2: new clues from the K20/GOODS sample , 2004, astro-ph/0411768.

[101]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[102]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[103]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[104]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[105]  K. Meisenheimer,et al.  GEMS: Which Galaxies Dominate the z ~ 0.7 Ultraviolet Luminosity Density? , 2004, astro-ph/0408289.

[106]  Explosive Yields of Massive Stars from Z = 0 to Z = Z? , 2004, astro-ph/0402625.

[107]  V. Springel,et al.  Photometric properties of Lyman-break galaxies at z = 3 in cosmological SPH simulations , 2003, astro-ph/0311295.

[108]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[109]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[110]  Neta A. Bahcall,et al.  The Dependence on Environment of the Color-Magnitude Relation of Galaxies , 2003, astro-ph/0307336.

[111]  R. Windhorst,et al.  The Major Sources of the Cosmic Reionizing Background at z ≃ 6 , 2003, astro-ph/0312572.

[112]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[113]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[114]  Peter Anders,et al.  Spectral and photometric evolution of young stellar populations: The impact of gaseous emission at various metallicities , 2003, astro-ph/0302146.

[115]  C. Baugh,et al.  The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.

[116]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[117]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[118]  H. Mo,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[119]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[120]  H. Ferguson,et al.  Lyman Break Galaxies and the Reionization of the Intergalactic Medium , 2002, astro-ph/0204198.

[121]  S. White,et al.  Gas cooling in simulations of the formation of the galaxy population , 2002, astro-ph/0202341.

[122]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[123]  R. Wechsler,et al.  Galaxy halo occupation at high redshift , 2001, astro-ph/0106293.

[124]  V. Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001, astro-ph/0111016.

[125]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[126]  Mark Dickinson,et al.  Clustering Segregation with Ultraviolet Luminosity in Lyman Break Galaxies at z~3 and Its Implications , 2000, astro-ph/0012249.

[127]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[128]  D. Weinberg,et al.  High-Redshift Galaxies in Cold Dark Matter Models , 2000, astro-ph/0005340.

[129]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[130]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[131]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[132]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[133]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[134]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[135]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[136]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[137]  D. Weinberg,et al.  Hydrodynamic Simulations of Galaxy Formation. II. Photoionization and the Formation of Low Mass Galaxies , 1995, astro-ph/9510154.

[138]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[139]  D. G. Hummer,et al.  Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8 , 1995 .

[140]  J. Salzer,et al.  Emission-Line Galaxy Surveys as Probes of the Spatial Distribution of Dwarf Galaxies. I. The University of Michigan Survey , 2000, astro-ph/0001390.

[141]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[142]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[143]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[144]  L. Schulman,et al.  Theory of dwarf galaxies , 1980 .

[145]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[146]  W. Sargent,et al.  Inferences from the Composition of Two Dwarf Blue Galaxies , 1972 .

[147]  E. Salpeter The Luminosity function and stellar evolution , 1955 .