An overview of the mathematical modelling of liquid membrane separation processes in hollow fibre contactors

Liquid membranes have traditionally been employed for liquid/liquid mass transfer and have found applications in industrial, biomedical and analytical fields as well as in hydrometallurgical processes, wastewater treatment and remediation of polluted groundwater. However, in spite of the known advantages of liquid membranes, there are few examples of industrial application. The development of reliable mathematical models and design parameters (mass transport coefficients and equilibrium or kinetic parameters associated with the interfacial reactions) is a necessary step for design, cost estimation, process optimisation and scale-up. This work reports an overview of the different approaches that have been proposed in the literature to the mathematical modelling of liquid membrane separation processes in hollow fibre contactors providing, at the same time, a useful guideline to characterise the mass transport phenomena and a tool for the optimal design and intensification of separation processes. Copyright © 2009 Society of Chemical Industry

[1]  B. Galán,et al.  Recycling of Cr(VI) by membrane solvent extraction: Long term performance with the mathematical model , 2006 .

[2]  B. Galán,et al.  Kinetics of separating multicomponent mixtures by nondispersive solvent extraction: Ni and Cd , 2001 .

[3]  P. Stroeve,et al.  Selective and enhanced mass separation in hollow fiber membranes with facilitated ion-pair transport , 1989 .

[4]  S. Stevanović,et al.  Pertraction of phenol in hollow-fiber membrane contactors☆ , 2004 .

[5]  I. Souchon,et al.  Membrane-based solvent extraction of sulfur aroma compounds: influence of operating conditions on mass transfer coefficients in a hollow fiber contactor , 2002 .

[6]  Weidong Zhang,et al.  Mass transfer characteristics of citric acid extraction by hollow fiber renewal liquid membrane , 2009 .

[7]  A. I. Alonso,et al.  Modelling and simulation of integrated membrane processes for recovery of Cr(VI) with Aliquat 336 , 1996 .

[8]  P. Danesi Separation of Metal Species by Supported Liquid Membranes , 1984 .

[9]  J. V. Sonawane,et al.  Separation of Uranium and Plutonium from Aqueous Acidic Wastes Using a Hollow Fiber Supported Liquid Membrane , 2005 .

[10]  P. Danesi,et al.  A simplified model for the coupled transport of metal ions through hollow-fiber supported liquid membranes , 1984 .

[11]  Š. Schlosser,et al.  Membrane based solvent extraction and stripping of a heterocyclic carboxylic acid in hollow fiber contactors , 2002 .

[12]  Kamalesh K. Sirkar,et al.  Novel solvent-resistant hydrophilic hollow fiber membranes for efficient membrane solvent back extraction , 2007 .

[13]  M. Goto,et al.  Extraction of lactic acid from fermented broth with microporous hollow fiber membranes , 1998 .

[14]  J. Wiencek,et al.  Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor , 1998 .

[15]  R. Juang,et al.  Modeling extraction separation of Nd(III) and La(III) from nitrate media in hollow-fiber modules , 2007 .

[16]  J. Crespo,et al.  Extraction and re-extraction of phenylalanine by cationic reversed micelles in hollow fibre contactors , 1999 .

[17]  J. Szymanowski,et al.  Recovery of phenol from aqueous streams in hollow fiber modules. , 2002, Environmental science & technology.

[18]  G. Stevens,et al.  STUDY OF Cr(VI) / TERTIARY AMINE REACTION KINETICS USING A MODIFIED ROTATING DIFFUSION CELL , 2000 .

[19]  Inmaculada Ortiz,et al.  Membrane mass transport coefficient for the recovery of Cr(VI) in hollow fiber extraction and back-extraction modules , 1996 .

[20]  H. Yeh,et al.  Solvent extraction in multipass parallel-flow mass exchangers of microporous hollow-fiber modules , 1995 .

[21]  K. Sirkar,et al.  Novel Membrane-Based Synergistic Metal Extraction and Recovery Processes , 1996 .

[22]  Š. Schlosser,et al.  Membrane-based solvent extraction and stripping of phenylalanine in HF contactors , 2005 .

[23]  Á. Irabien,et al.  Separation of L-Phenylalanine by Nondispersive Extraction and Backextraction. Equilibrium and Kinetic Parameters , 1998 .

[24]  Doraiswami Ramkrishna,et al.  The extended Graetz problem with Dirichlet wall boundary conditions , 1980 .

[25]  J. V. Sonawane,et al.  Application of Hollow Fiber Contactor in Nondispersive Solvent Extraction of Pu(IV) by TBP , 2005 .

[26]  J. Marchese,et al.  Mass transfer of cadmium ions in a hollow-fiber module by pertraction , 2004 .

[27]  L. Mathiasson,et al.  Memrane extraction in analytical chemistry , 2001 .

[28]  A. Alhusseini Modeling Mass Transfer Enhancement in Pulsed Contained Liquid Membranes , 2000 .

[29]  P. Harrington Steady-state mass transfer and modelling in hollow fibre liquid membranes , 2001 .

[30]  A. C. Habert,et al.  Brazilian Journal of Chemical Engineering RECENT ACHIEVEMENTS IN FACILITATED TRANSPORT MEMBRANES FOR SEPARATION PROCESSES , 2007 .

[31]  K. Schügerl,et al.  Application of large-scale hollow fiber membrane contactors for simultaneous extractive removal and stripping of penicillin G , 2002 .

[32]  Monwar Hossain Reactive extraction of amino acids and dipeptides using an extra-flow hollow-fiber module , 2005 .

[33]  J. Crespo,et al.  Removal of valeric acid from wastewaters by membrane contactors , 1997 .

[34]  Seraj A. Ansari,et al.  Separation of Am(III) and trivalent lanthanides from simulated high-level waste using a hollow fiber-supported liquid membrane , 2008 .

[35]  Inmaculada Ortiz,et al.  Selective membrane alternative to the recovery of zinc from hot-dip galvanizing effluents , 2009 .

[36]  J. R. Carvalho,et al.  Recovery of copper from ammoniacal medium using liquid membranes with LIX 54 , 2008 .

[37]  Á. Irabien,et al.  Extraction of Cr(VI) with aliquat 336 in hollow fiber contactors: mass transfer analysis and modeling , 1994 .

[38]  P. Danesi PERMEATION OF METAL IONS THROUGH HOLLOW-FIBER SUPPORTED LIQUID MEMBRANES: CONCENTRATION EQUATIONS FOR ONCE-THROUGH AND RECYCLING MODULE ARRANGEMENTS∗ , 1984 .

[39]  J. Crespo,et al.  Transport mechanisms and modelling in liquid membrane contactors , 2000 .

[40]  A. E. Jansen,et al.  The membrane contactor: Environmental applications and possibilities , 2001 .

[41]  I. Havalda,et al.  Membrane-based solvent extraction and stripping of zinc in a hollow-fibre contactor operating in a circulating mode , 2004 .

[42]  I. Ortiz,et al.  Selective Separation of Zinc and Iron from Spent Pickling Solutions by Membrane‐Based Solvent Extraction: Process Viability , 2005 .

[43]  J. Cabral,et al.  Lumen mass transfer in hollow-fiber membrane processes with nonlinear boundary conditions , 1998 .

[44]  Jae-chun Lee,et al.  Modeling on the Counteractive Facilitated Transport of Co in Co–Ni Mixtures by Hollow-Fiber Supported Liquid Membrane , 2003 .

[45]  R. Juang,et al.  Dispersion-free membrane extraction: case studies of metal ion and organic acid extraction , 2000 .

[46]  Inmaculada Ortiz,et al.  Kinetics of Zinc Recovery from Spent Pickling Effluents , 2007 .

[47]  J. V. Sonawane,et al.  Pseudo-Emulsion Based Hollow Fiber Strip Dispersion Technique (PEHFSD): Optimization, Modelling and Application of PEHFSD for Recovery of U(VI) from Process Effluent , 2008 .

[48]  Anil Kumar,et al.  Use of modified membrane carrier system for recovery of gold cyanide from alkaline cyanide media using hollow fiber supported liquid membranes: feasibility studies and mass transfer modeling , 2000 .

[49]  K. Sirkar,et al.  Hollow fiber solvent extraction of pharmaceutical products: A case study , 1989 .

[50]  P. Stroeve,et al.  Effect of a variable solute distribution coefficient on mass separation in hollow fibers , 1992 .

[51]  A. Karabelas,et al.  Mass transfer in liquid-liquid membrane-based extraction at small fiber packing fractions , 2006 .

[52]  Ritsu Yasukawa,et al.  DIFFUSION MODEL ACCOMPANIED WITH AQUEOUS HOMOGENEOUS REACTION IN HOLLOW FIBER MEMBRANE EXTRACTOR , 1995 .

[53]  L. Pinoy,et al.  Recovery of nickel ions by supported liquid membrane (SLM) extraction , 2004 .

[54]  K. Sirkar,et al.  Heavy metal removal and recovery by contained liquid membrane permeator , 1994 .

[55]  I. Ortiz,et al.  Application of Hollow Fiber Membrane Contactors for Catalyst Recovery in the WPO Process , 2003, Annals of the New York Academy of Sciences.

[56]  R. Noble Shape factors in facilitated transport through membranes , 1983 .

[57]  K. Sirkar,et al.  Simultaneous and synergistic extraction of cationic and anionic heavy metallic species by a mixed solvent extraction system and a novel contained liquid membrane device , 1996 .

[58]  R. Field,et al.  Mass transfer performance for hollow fibre modules with shell-side axial feed flow: using an engineering approach to develop a framework , 2001 .

[59]  R. Juang,et al.  Modeling of nondispersive extraction of binary Zn(II) and Cu(II) with D2EHPA in hollow fiber devices , 2002 .

[60]  H. Takanashi,et al.  Back extraction of lactic acid with microporous hollow fiber membrane , 1999 .

[61]  I. Souchon,et al.  Recovery of sulfur aroma compounds using membrane-based solvent extraction , 2001 .

[62]  J. R. Alvarez,et al.  Mass transfer correlations in membrane extraction: Analysis of Wilson-plot methodology , 1998 .

[63]  K. Sirkar,et al.  Dispersion‐free solvent extraction with microporous hollow‐fiber modules , 1988 .

[64]  Jean-Claude Charpentier,et al.  Managing complex systems: some trends for the future of chemical and process engineering , 2004 .

[65]  Š. Schlosser,et al.  Design and simulation of two phase hollow fiber contactors for simultaneous membrane based solvent extraction and stripping of organic acids and bases , 2005 .

[66]  E. Nagy,et al.  Analysis of mass transfer in hollow-fiber membranes , 2002 .

[67]  P. Stroeve,et al.  Uphill transport of a dilute solute in mass separation devices with reactive co-transport membranes , 1990 .

[68]  A. E. Jansen,et al.  Membrane Contactors in Industrial Applications , 2005 .

[69]  Qian Yang,et al.  Copper removal from ammoniacal wastewater through a hollow fiber supported liquid membrane system: Modeling and experimental verification , 2007 .

[70]  J. Floury,et al.  Liquid‐liquid extraction of aroma compounds with hollow fiber contactor , 2001 .

[71]  A. Michaels,et al.  Removal of p-nitrophenol from aqueous solution by membrane-supported solvent extraction , 1992 .

[72]  J. Marchese,et al.  Mechanistic study of cobalt, nickel and copper transfer across a supported liquid membrane , 2007 .

[73]  R. Juang,et al.  Kinetic analysis of non-dispersive solvent extraction of concentrated Co(II) from chloride solutions with Aliquat 336: Significance of the knowledge of reaction equilibrium , 2005 .

[74]  Š. Schlosser,et al.  Three-phase contactor with distributed U-shaped bundles of hollow-fibers for pertraction , 2002 .

[75]  N. N. Dutta,et al.  Extraction of L-phenylalanine in hollow fiber membrane , 2003 .

[76]  N. N. Dutta,et al.  REACTIVE EXTRACTION OF 7-AMINOCEPHALOSPORANIC ACID WITH ALIQUAT-336: EQUILIBRIUM AND KINETICS , 2000 .

[77]  B. Galán,et al.  Kinetic analysis of the simultaneous nondispersive extraction and back-extraction of chromium(VI) , 1996 .

[78]  F. J. Alguacil,et al.  Non-dispersive solvent extraction of Cu(II) by LIX 973N from ammoniacal/ammonium carbonate aqueous solutions , 2002 .

[79]  J. Coca,et al.  Recovery of phenol from aqueous solutions using hollow fibre contactors , 2003 .

[80]  P. Stroeve,et al.  Uphill transport in mass separation devices with reactive membranes: counter-transport , 1989 .

[81]  Anilesh Kumar,et al.  Improved Techniques in Liquid Membrane Separations: An Overview , 1998 .

[82]  K. Soldenhoff,et al.  Liquid–liquid extraction of cobalt with hollow fiber contactor , 2005 .

[83]  P. Plucinski,et al.  Mass transfer in the shell side of cross flow hollow fiber modules , 1998 .

[84]  Inmaculada Ortiz,et al.  Separation and Recovery of Anionic Pollutants by the Emulsion Pertraction Technology. Remediation of Polluted Groundwaters with Cr(VI) , 2006 .

[85]  F. Valenzuela,et al.  Application of a mathematical model for copper permeation from a Chilean mine water through a hollow fiber-type supported liquid membrane , 2002 .

[86]  J. Crespo,et al.  Membrane-based solvent extraction and stripping of lactate in hollow-fibre contactors , 1997 .

[87]  D. Do,et al.  Effects of a carrier and its diluent on the transport of metals across supported liquid membranes (SLM). II. Viscosity Effect , 1986 .

[88]  Inmaculada Ortiz,et al.  Experimental and Theoretical Analysis of a Nondispersive Solvent Extraction Pilot Plant for the Removal of Cr(VI) from a Galvanic Process Wastewaters , 1999 .

[89]  D. Trébouet,et al.  Non‐dispersive Solvent Extraction of Alkali Metals with the Dicyclohexano 18 Crown 6: Evaluation of Mass Transfer Coefficients , 2004 .

[90]  Edward L Cussler,et al.  Liquid-liquid extractions with microporous hollow fibers , 1986 .

[91]  J. Buffle,et al.  Hollow fiber based supported liquid membrane: a novel analytical system for trace metal analysis , 1997 .

[92]  Geert-Jan Witkamp,et al.  Extraction of cadmium and copper using hollow fiber supported liquid membranes , 1998 .

[93]  R. Juang,et al.  Mechanistic analysis of solvent extraction of heavy metals in membrane contactors , 2003 .

[94]  Ana M. Eliceche,et al.  Modeling and Optimization of an Emulsion Pertraction Process for Removal and Concentration of Cr(VI) , 2003 .

[95]  N. N. Dutta,et al.  Reactive extraction of cephalosporin antibiotics in hollow fiber membrane , 1999 .

[96]  F. J. Alguacil,et al.  Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors , 2005 .

[97]  Imona C. Omole Hollow-fiber membrane contactors , 1999 .

[98]  Bing Wang,et al.  Strontium Removal by New Alkyl Phenylphosphonic Acids in Supported Liquid Membranes with Strip Dispersion , 2002 .

[99]  Ana Maria Sastre,et al.  Integrated membrane process for gold recovery from hydrometallurgical solutions , 2001 .

[100]  Ching‐Yeh Shiau,et al.  Theoretical Analysis of Copper-Ion Extraction through Hollow Fiber Supported Liquid Membranes , 1993 .

[101]  Á. Irabien,et al.  Nondispersive extraction of Cr(VI) with Aliquat 336 : influence of carrier concentration , 1996 .

[102]  I. Komasawa,et al.  Mechanism and kinetics of copper permeation through a supported liquid membrane containing a hydroxyoxime as a mobile carrier , 1983 .

[103]  I. Souchon,et al.  Liquid‐liquid and liquid‐gas extraction of aroma compounds with hollow fibers , 2006 .

[104]  Inmaculada Ortiz,et al.  Membrane contactors for the recovery of metallic compounds modelling of copper recovery from WPO processes , 2005 .

[105]  E. Cussler,et al.  Reaction dependent extraction of copper and nickel using hollow fibers , 2000 .

[106]  J. Coca,et al.  Simulation of integrated extraction and stripping processes using membrane contactors , 2004 .

[107]  J. R. Carvalho,et al.  Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923 , 2007 .

[108]  I. Ortiz,et al.  Analysis of the back-extraction of cadmium–nickel–D2EHPA organic phases , 2002 .

[109]  Zhongqi Ren,et al.  Modeling of Effect of pH on Mass Transfer of Copper(II) Extraction by Hollow Fiber Renewal Liquid Membrane , 2008 .

[110]  Inmaculada Ortiz,et al.  Separation of Cr (VI) with Aliquat 336: Chemical Equilibrium Modeling , 1997 .

[111]  Pancharoen Ura,et al.  Mass transfer modeling of membrane carrier system for extraction of Ce(IV) from sulfate media using hollow fiber supported liquid membrane , 2006 .

[112]  B. Galán,et al.  Kinetics of the recovery of Cd from highly concentrated aqueous solutions by non-dispersive solvent extraction , 2001 .

[113]  W. S. Winston Ho,et al.  New membrane technology for removal and recovery of chromium from waste waters , 2001 .

[114]  K. Sirkar,et al.  Separation of a 2-propanol/n-heptane mixture by liquid membrane perstraction , 1993 .

[115]  José Sánchez,et al.  Modeling the mass transfer in solvent‐extraction processes with hollow‐fiber membranes , 2005 .

[116]  I. Ortiz,et al.  Removal of anionic pollutants from groundwaters using Alamine 336 : chemical equilibrium modelling , 2006 .

[117]  Su Lin,et al.  Mass-transfer in hollow-fiber modules for extraction and back-extraction of copper(II) with LIX64N carriers , 2001 .

[118]  I. Ortiz,et al.  Modelling of the Extraction and Back‐Extraction Equilibria of Zinc from Spent Pickling Solutions , 2006 .

[119]  I. Ortiz,et al.  Comparison of liquid membrane processes for the removal of cadmium from wet phosphoric acid , 2000 .

[120]  A. Urtiaga,et al.  PHENOL RECOVERY WITH SLM USING “CYANEX 923” , 1993 .

[121]  Anthony G. Fane,et al.  Comparison of liquid-membrane processes for metal separations , 1999 .

[122]  Qian Yang,et al.  Copper recovery and spent ammoniacal etchant regeneration based on hollow fiber supported liquid membrane technology: From bench-scale to pilot-scale tests , 2006 .

[123]  K. Schimmel,et al.  Hollow-fiber dispersion-free extraction and stripping of Pb(II) in the presence of Cd(II) using D2EHPA under recirculating operation mode , 2004 .

[124]  Ignacio E. Grossmann,et al.  Optimal synthesis of an emulsion pertraction process for the removal of pollutant anions in industrial wastewater systems , 2007, Comput. Chem. Eng..

[125]  M. Harada,et al.  Kinetic mechanism of metal extraction with hydroxyoximes , 1989 .

[126]  Anilesh Kumar,et al.  Hollow Fiber Supported Liquid Membrane for the Separation/Concentration of Gold(I) from Aqueous Cyanide Media: Modeling and Mass Transfer Evaluation , 2000 .

[127]  J. V. Sonawane,et al.  Hollow fiber supported liquid membrane: a novel technique for separation and recovery of plutonium from aqueous acidic wastes , 2001 .

[128]  Anilesh Kumar,et al.  Dispersion-Free Solvent Extraction and Stripping of Gold Cyanide with LIX79 Using Hollow Fiber Contactors: Optimization and Modeling , 2002 .

[129]  I. Ortiz,et al.  An integrated process for the removal of Cd and U from wet phosphoric acid , 1999 .

[130]  Josefina de Gyves and,et al.  Metal Ion Separations by Supported Liquid Membranes , 1999 .

[131]  I. Komasawa,et al.  Kinetic studies of the extraction of divalent metals from nitrate media with bis(2-ethylhexyl)phosphoric acid , 1983 .

[132]  K. Sirkar,et al.  Hollow fiber solvent extraction removal of toxic heavy metals from aqueous waste streams , 1993 .

[133]  Š. Schlosser,et al.  Mass-transfer in membrane based solvent extraction and stripping of 5-methyl-2-pyrazinecarboxylic acid and co-transport of sulphuric acid in HF contactors , 2004 .

[134]  J. V. Sonawane,et al.  Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactor , 2007 .

[135]  A. Urtiaga,et al.  Supported liquid membranes for the separation-concentration of phenol. 2. Mass-transfer evaluation according to fundamental equations , 1992 .

[136]  B. S. Rawat,et al.  Removal of phenols from wastewater using liquid membranes in a microporous hollow-fiber-membrane extractor , 1997 .

[137]  K. Sirkar,et al.  Lipase-facilitated separation of organic acids in a hollow fiber contained liquid membrane module , 2000 .

[138]  Á. Irabien,et al.  Kinetic modelling of cadmium removal from phosphoric acid by non-dispersive solvent extraction , 1997 .

[139]  D. Do,et al.  Effects of a carrier and its diluent on the transport of metals across supported liquid membranes (SLM). I. Solubility mechanism , 1986 .

[140]  A. Urtiaga,et al.  Supported liquid membranes for the separation-concentration of phenol. 1. Viability and mass-transfer evaluation , 1992 .

[141]  Eva Sorensen,et al.  A general approach to modelling membrane modules , 2003 .

[142]  A. K. Pabby,et al.  Improved kinetics-based gold cyanide extraction with mixture of LIX79+TOPO utilizing hollow fiber membrane contactors , 2004 .

[143]  J. V. Sonawane,et al.  Au(I) extraction by LIX-79/n-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique , 2007 .

[144]  José Sánchez,et al.  Extraction of aroma compounds in a HFMC: Dynamic modelling and simulation , 2008 .

[145]  Ming-Chien Yang,et al.  Designing hollow‐fiber contactors , 1986 .

[146]  José Sánchez,et al.  Membrane-based solvent extraction of aroma compounds : Choice of configurations of hollow fiber modules based on experiments and simulation , 2006 .

[147]  Ignacio E. Grossmann,et al.  Optimal groundwater remediation network design using selective membranes , 2007 .

[148]  Enrico Drioli,et al.  Metal ion separation and concentration with supported liquid membranes , 1986 .

[149]  Kinetic analysis on reactive extraction of aspartic acid from water in hollow fiber membrane modules , 2006 .

[150]  Abdelhamid Ajbar,et al.  Mass transfer in supported liquid membranes: A rigorous model , 2000 .

[151]  R. Juang,et al.  Hollow-Fiber Membrane Extraction of Copper(II) from Aqueous Ethylenediaminetetraacetic Acid Solutions with Aliquat 336 , 2000 .

[152]  A. Urtiaga,et al.  Analysis of a NDSX Process for the Selective Removal of Cd from Phosphoric Acid , 1999 .

[153]  R. Gawroński Kinetics of solvent extraction in hollow-fiber contactors , 2000 .

[154]  P. Stroeve,et al.  Mass Transfer in Separation Devices with Reactive Hollow Fibers - Slow Reaction , 1988 .

[155]  Jean-Claude Charpentier,et al.  The triplet "molecular processes-product-process" engineering: the future of chemical engineering ? , 2002 .

[156]  Chii-Dong Ho,et al.  Theoretical study on membrane extraction of Cu2+ with D2EHPA in laminar flow circular tube modules , 2008 .

[157]  C. Tapia,et al.  Application of hollow-fiber supported liquid membranes technique to the selective recovery of a low content of copper from a Chilean mine water , 1999 .

[158]  A. Urtiaga,et al.  Internal mass transfer in hollow fiber supported liquid membranes , 1993 .