Mechanical metamaterials for full-band mechanical wave shielding

[1]  M. Wegener,et al.  Ultrasound experiments on acoustical activity in chiral mechanical metamaterials , 2019, Nature Communications.

[2]  Guoliang Huang,et al.  Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators , 2019, Journal of Sound and Vibration.

[3]  M Maarten Steinbuch,et al.  Disturbance feedforward control for active vibration isolation systems with internal isolator dynamics , 2018, Journal of Sound and Vibration.

[4]  K. Inamoto,et al.  Improved Feasible Load Range and Its Effect on the Frequency Response of Origami-Inspired Vibration Isolators With Quasi-Zero-Stiffness Characteristics1 , 2018, Journal of Vibration and Acoustics.

[5]  Xiaoming Wang,et al.  Characteristic analysis of a quasi-zero-stiffness vibration isolator , 2018, IOP Conference Series: Materials Science and Engineering.

[6]  H. Ouyang,et al.  Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator , 2018 .

[7]  Hui Liu,et al.  Beneficial stiffness design of a high-static-low-dynamic-stiffness vibration isolator based on static and dynamic analysis , 2018, International Journal of Mechanical Sciences.

[8]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[9]  Xuedong Chen,et al.  Design of Active Controller for Low-Frequency Vibration Isolation Considering Noise Levels of Bandwidth-Extended Absolute Velocity Sensors , 2018, IEEE/ASME Transactions on Mechatronics.

[10]  Di Zhang,et al.  Giant Thermal Expansion in 2D and 3D Cellular Materials , 2018, Advanced materials.

[11]  Kon-Well Wang,et al.  Programmable Self‐Locking Origami Mechanical Metamaterials , 2018, Advanced materials.

[12]  Yong Wang,et al.  Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness , 2018, Proceedings of the National Academy of Sciences.

[13]  Zhengyi Jiang,et al.  Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review , 2017 .

[14]  Martin Wegener,et al.  Three-dimensional mechanical metamaterials with a twist , 2017, Science.

[15]  Sachiko Ishida,et al.  Design and Experimental Analysis of Origami-Inspired Vibration Isolator With Quasi-Zero-Stiffness Characteristic , 2017 .

[16]  Lauryna Gailiūnienė,et al.  The effect of low frequency 2-10 Hz vibrations on blood circulation in lower extremities , 2017 .

[17]  Ichiro Hagiwara,et al.  Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures , 2017 .

[18]  R. McMeeking,et al.  Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness , 2017, Nature.

[19]  D. Sounas,et al.  Static non-reciprocity in mechanical metamaterials , 2017, Nature.

[20]  Neil Mansfield,et al.  Neonatal head and torso vibration exposure during inter-hospital transfer , 2017, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[21]  J. Lewis,et al.  Printing soft matter in three dimensions , 2016, Nature.

[22]  N. Fang,et al.  Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion. , 2016, Physical review letters.

[23]  Lang Chen,et al.  Negative Poisson's Ratio in Modern Functional Materials , 2016, Advanced materials.

[24]  Xianfan Xu,et al.  Auxetic Black Phosphorus: A 2D Material with Negative Poisson's Ratio. , 2016, Nano letters.

[25]  M. Ducloy,et al.  Tailoring optical metamaterials to tune the atom-surface Casimir-Polder interaction , 2016, Science Advances.

[26]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .

[27]  Bo Yan,et al.  Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring , 2016 .

[28]  N. Litchinitser,et al.  Optical meta-atoms: Going nonlinear , 2015, Science.

[29]  Xiaoming Mao,et al.  Transformable topological mechanical metamaterials , 2015, Nature Communications.

[30]  Jakob S. Jensen,et al.  Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations , 2015, Advanced materials.

[31]  D. Pasini,et al.  Snapping Mechanical Metamaterials under Tension , 2015, Advanced materials.

[32]  Yu Wang,et al.  Design of a novel quasi-zero-stiffness based sensor system for measurement of absolute vibration motion , 2015, 2015 10th Asian Control Conference (ASCC).

[33]  J. R. Raney,et al.  Multistable Architected Materials for Trapping Elastic Strain Energy , 2015, Advanced materials.

[34]  E. Riedo,et al.  Advanced scanning probe lithography. , 2014, Nature nanotechnology.

[35]  R. Schittny,et al.  An elasto-mechanical unfeelability cloak made of pentamode metamaterials , 2014, Nature Communications.

[36]  David R. Smith,et al.  Broadband electromagnetic cloaking with smart metamaterials , 2012, Nature Communications.

[37]  Michael J. Griffin,et al.  An analytic model of the in-line and cross-axis apparent mass of the seated human body exposed to vertical vibration with and without a backrest , 2011 .

[38]  Chunguang Xia,et al.  Broadband acoustic cloak for ultrasound waves. , 2010, Physical review letters.

[39]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[40]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[41]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[42]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[43]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[44]  M. Friedman Visual control of head movements during avian locomotion , 1975, Nature.

[45]  Luca Placidi,et al.  Mechanical metamaterials: a state of the art , 2019 .

[46]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.