Bergman–Calabi diastasis and Kähler metric of constant holomorphic sectional curvature
暂无分享,去创建一个
[1] E. Calabi. ISOMETRIC IMBEDDING OF COMPLEX MANIFOLDS , 1953 .
[2] S. Bochner. Curvature in Hermitian metric , 1947 .
[3] K. Diederich,et al. Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions , 1977 .
[4] 小林 昭七. Hyperbolic manifolds and holomorphic mappings , 1970 .
[5] Kang-Hyurk Lee,et al. A method of potential scaling in the study of pseudoconvex domains with noncompact automorphism group , 2020, Journal of Mathematical Analysis and Applications.
[6] $L²_{h}$-domains of holomorphy and the Bergman kernel , 2000, math/0012187.
[7] G. Herbort. The Bergman metric on hyperconvex domains , 1999 .
[8] Alexander Isaev,et al. Invariant distances and metrics in complex analysis , 2000 .
[9] G. Misra. The Bergman kernel function , 2010 .
[10] Quadratintegrable holomorphe Funktionen und die Serre-Vermutung , 1975 .
[11] T. Ohsawa. On the bergman kernel of hyperconvex domains , 1993, Nagoya Mathematical Journal.
[12] N. Kerzman. The Bergman kernel function. Differentiability at the boundary , 1971 .
[13] W. Zwonek. An example concerning Bergman completeness , 2000, Nagoya Mathematical Journal.
[14] Bergman–Einstein metrics, a generalization of Kerner’s theorem and Stein spaces with spherical boundaries , 2020 .
[15] Gerald B. Folland,et al. The Neumann problem for the Cauchy-Riemann complex , 1973 .
[16] Victor Alexandrov,et al. Problem section , 2007 .
[17] Siqi Fu,et al. On strictly pseudoconvex domains with Kähler-Einstein Bergman metrics , 1997 .
[18] P. Pflug,et al. Hyperconvexity and Bergman completeness , 1998, Nagoya Mathematical Journal.
[19] Continuation of L2-holomorphic functions , 2004 .
[20] Chen Boyong. A remark on the bergman completeness , 2000 .
[21] On a local characterization of pseudoconvex domains , 2008, 0808.0313.
[22] T. Ohsawa. A remark on the completeness of the Bergman metric , 1981 .
[23] B. Wong. On the holomorphic curvature of some intrinsic metrics , 1977 .
[24] F. Browder. The mathematical heritage of Henri Poincaré , 1983 .
[25] Norberto Kerzman,et al. Fonctions plurisouscharmoniques d'exhaustion bornées et domaines taut , 1981 .
[26] Andrew M. Zimmer. Compactness of the ∂¯-Neumann problem on domains with bounded intrinsic geometry , 2021, Journal of Functional Analysis.
[27] J. Demailly. Mesures de Monge-Ampère et mesures pluriharmoniques , 1987 .
[28] W. Cheung,et al. HERMITIAN METRIC WITH CONSTANT HOLOMORPHIC SECTIONAL CURVATURE ON CONVEX DOMAINS , 2000 .
[29] Shing-Tung Yau,et al. On the existence of a complete Kähler metric on non‐compact complex manifolds and the regularity of fefferman's equation , 1980 .