Bergman–Calabi diastasis and Kähler metric of constant holomorphic sectional curvature

We prove that for a bounded domain in C with the Bergman metric of constant holomorphic sectional curvature being biholomorphic to a ball is equivalent to the hyperconvexity or the exhaustiveness of the Bergman-Calabi diastasis. By finding its connection with the Bergman representative coordinate, we give explicit formulas of the Bergman-Calabi diastasis and show that it has bounded gradient. In particular, we prove that any bounded domain whose Bergman metric has constant holomorphic sectional curvature is Lu Qi-Keng. We also extend a theorem of Lu towards the incomplete situation and characterize pseudoconvex domains that are biholomorphic to a ball possibly less a relatively closed pluripolar set.

[1]  E. Calabi ISOMETRIC IMBEDDING OF COMPLEX MANIFOLDS , 1953 .

[2]  S. Bochner Curvature in Hermitian metric , 1947 .

[3]  K. Diederich,et al.  Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions , 1977 .

[4]  小林 昭七 Hyperbolic manifolds and holomorphic mappings , 1970 .

[5]  Kang-Hyurk Lee,et al.  A method of potential scaling in the study of pseudoconvex domains with noncompact automorphism group , 2020, Journal of Mathematical Analysis and Applications.

[6]  $L²_{h}$-domains of holomorphy and the Bergman kernel , 2000, math/0012187.

[7]  G. Herbort The Bergman metric on hyperconvex domains , 1999 .

[8]  Alexander Isaev,et al.  Invariant distances and metrics in complex analysis , 2000 .

[9]  G. Misra The Bergman kernel function , 2010 .

[10]  Quadratintegrable holomorphe Funktionen und die Serre-Vermutung , 1975 .

[11]  T. Ohsawa On the bergman kernel of hyperconvex domains , 1993, Nagoya Mathematical Journal.

[12]  N. Kerzman The Bergman kernel function. Differentiability at the boundary , 1971 .

[13]  W. Zwonek An example concerning Bergman completeness , 2000, Nagoya Mathematical Journal.

[14]  Bergman–Einstein metrics, a generalization of Kerner’s theorem and Stein spaces with spherical boundaries , 2020 .

[15]  Gerald B. Folland,et al.  The Neumann problem for the Cauchy-Riemann complex , 1973 .

[16]  Victor Alexandrov,et al.  Problem section , 2007 .

[17]  Siqi Fu,et al.  On strictly pseudoconvex domains with Kähler-Einstein Bergman metrics , 1997 .

[18]  P. Pflug,et al.  Hyperconvexity and Bergman completeness , 1998, Nagoya Mathematical Journal.

[19]  Continuation of L2-holomorphic functions , 2004 .

[20]  Chen Boyong A remark on the bergman completeness , 2000 .

[21]  On a local characterization of pseudoconvex domains , 2008, 0808.0313.

[22]  T. Ohsawa A remark on the completeness of the Bergman metric , 1981 .

[23]  B. Wong On the holomorphic curvature of some intrinsic metrics , 1977 .

[24]  F. Browder The mathematical heritage of Henri Poincaré , 1983 .

[25]  Norberto Kerzman,et al.  Fonctions plurisouscharmoniques d'exhaustion bornées et domaines taut , 1981 .

[26]  Andrew M. Zimmer Compactness of the ∂¯-Neumann problem on domains with bounded intrinsic geometry , 2021, Journal of Functional Analysis.

[27]  J. Demailly Mesures de Monge-Ampère et mesures pluriharmoniques , 1987 .

[28]  W. Cheung,et al.  HERMITIAN METRIC WITH CONSTANT HOLOMORPHIC SECTIONAL CURVATURE ON CONVEX DOMAINS , 2000 .

[29]  Shing-Tung Yau,et al.  On the existence of a complete Kähler metric on non‐compact complex manifolds and the regularity of fefferman's equation , 1980 .