Design of Sinh-Domain filters using complementary operators

A new systematic method for designing Sinh-Domain filters is introduced in this paper. This is achieved by employing an appropriate set of complementary operators, in order to transpose the conventional functional block diagram representation of each linear operation to the corresponding one into the Sinh-Domain. The proposed method offers the benefits of facilitating the design procedure of high-order Sinh-Domain filters and of the absence of any restriction concerning the type and/or the order of the realized filter function. As an example, a third-order Sinh-Domain leapfrog filter is designed by employing the proposed set of operators. Two possible realizations are given and their performance has been evaluated and compared through simulation results. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Jiann-Jong Chen,et al.  Design of current-mode MOSFET-C filters using OTRAs , 2009 .

[2]  Shahram Minaei,et al.  Electronically Tunable Current-Mode Universal biquad Filter Using Dual-X Current Conveyors , 2009, J. Circuits Syst. Comput..

[3]  Costas Psychalinos,et al.  Log-domain filtering by simulating the topology of passive prototypes , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Ahmed M. Soliman,et al.  Realizations of fully differential voltage second generation current conveyor with an application , 2010 .

[5]  Wouter A. Serdijn,et al.  A 1-V Class-AB Translinear Integrator for Filter Applications , 1999 .

[6]  A. Carlosena,et al.  Synthesis of sinh systems from Gm-C systems by component-to-component substitution , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[7]  Costas Psychalinos,et al.  Square-root domain linear transformation filters , 2011, Int. J. Circuit Theory Appl..

[8]  Kirat Pal,et al.  CMOS‐controlled inverting CDBA with a new all‐pass filter application , 2011, Int. J. Circuit Theory Appl..

[9]  A. Carlosena,et al.  Synthesis of internally nonlinear systems from LTI systems by component-to-component substitution and its application to companding , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[10]  George Souliotis,et al.  Current-mode wave field programmable analogue arrays , 2010 .

[11]  Costas Psychalinos Square-root domain wave filters: Research Articles , 2007 .

[12]  D. R. Frey,et al.  Log-domain filtering: An approach to current-mode fil-tering , 1993 .

[13]  Shahram Minaei,et al.  Input mapping algorithm for parallel transistor structures , 2009 .

[14]  Ahmed M. Soliman,et al.  Generation of current mode filters using NAM expansion , 2011, Int. J. Circuit Theory Appl..

[15]  Kirat Pal,et al.  All‐pass filters using DDCC‐ and MOSFET‐based electronic resistor , 2011, Int. J. Circuit Theory Appl..

[16]  Ahmed M. Soliman Generation and classification of Kerwin–Huelsman–Newcomb circuits using the DVCC , 2009 .

[17]  E.M. Drakakis,et al.  Sinh filters in weak inversion CMOS technology , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[18]  Emmanuel M. Drakakis,et al.  Insights and Advances on the Design of CMOS Sinh Companding Filters , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Costas Psychalinos,et al.  Universal biquad filter topology using low‐voltage current mirrors , 2012, Int. J. Circuit Theory Appl..

[20]  Wouter A. Serdijn,et al.  An ultra low-power class-AB sinh integrator , 2006, SBCCI '06.

[21]  Gordon W. Roberts,et al.  The design of log-domain filters based on the operational simulation of LC ladders , 1996 .

[22]  Shahram Minaei,et al.  Universal current-mode filters and parasitic impedance effects on the filter performances , 2008 .

[23]  Costas Psychalinos,et al.  A systematic design procedure for square-root-domain circuits based on the signal flow graph approach , 2002 .

[24]  Yannis Tsividis,et al.  Companding in signal processing , 1990 .

[25]  Costas Psychalinos Realization of log-domain high-order transfer functions using first-order building blocks and complementary operators: Research Articles , 2007 .

[26]  Wouter A. Serdijn,et al.  Design of High Dynamic Range Fully Integratable Translinear Filters , 1999 .

[27]  Costas Psychalinos Realization of log-domain high-order transfer functions using first-order building blocks and complementary operators , 2007, Int. J. Circuit Theory Appl..

[28]  Shahram Minaei,et al.  All-pass sections with rich cascadability and IC realization suitability , 2012, Int. J. Circuit Theory Appl..

[29]  Costas Psychalinos,et al.  Design of square-root domain filters by substituting the passive elements of the prototype filter by their equivalents , 2008 .

[30]  Emmanuel M. Drakakis,et al.  A Practical CMOS Companding Sinh Lossy Integrator , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[31]  Slawomir Koziel,et al.  Programmable feedforward linearized CMOS OTA for fully differential continuous-time filter design , 2010 .

[32]  Ahmed M. Soliman,et al.  On the systematic synthesis of CCII-based floating simulators , 2010 .

[33]  Costas Psychalinos Log-domain linear transformation filters revised: improved building blocks and comparison results , 2008 .

[34]  Costas Psychalinos,et al.  Modular log-domain filters realized using wave port terminators , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  Nisar A. Shah,et al.  A DC stabilized log-domain nth-order multifunction filter based on the decomposition of nth-order HP filter function to FLF topology , 2009 .

[36]  Antonio J. López-Martín,et al.  Systematic Design of Companding Systems by Component Substitution , 2001 .

[37]  Costas Psychalinos On the transposition of Gm-C filters to DC stabilized log-domain filters , 2006, Int. J. Circuit Theory Appl..

[38]  Montree Siripruchyanun,et al.  Current-mode biquadratic filter using DO-CCCDBAs , 2010 .

[39]  Costas Psychalinos Square-root domain wave filters , 2007, Int. J. Circuit Theory Appl..

[40]  D. R. Frey,et al.  A state-space formulation for externally linear class AB dynamical circuits , 1999 .

[41]  D. Frey Exponential state space filters: a generic current mode-design strategy , 1996 .

[42]  Yannis Tsividis,et al.  On linear integrators and differentiators using instantaneous companding , 1995 .

[43]  Sajal K. Paul,et al.  A new electronically tunable current mode universal filter using MO-CCCII , 2009 .