A parameterization of cirrus cloud formation: Heterogeneous freezing

[1] A physically based parameterization of cirrus cloud formation by heterogeneous freezing is developed along with a novel method to compute associated nucleation rates. The analysis is restricted to immersion freezing, possibly the dominant pathway for heterogeneous cirrus formation under cold ( 1.3–1.4 triggers cirrus formation, cloud properties are not very susceptible to changes of IN properties, as in the case of homogeneous freezing. In contrast, much stronger indirect aerosol effects on cirrus clouds are possible if at least two types of IN with distinct freezing thresholds compete during the freezing process, most likely leading to a suppression of ice crystal concentrations.

[1]  U. Schumann,et al.  In-situ observations of aerosol particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses , 2002 .

[2]  S. Kreidenweis,et al.  The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from SUCCESS , 1998 .

[3]  U. Lohmann Possible Aerosol Effects on Ice Clouds via Contact Nucleation , 2002 .

[4]  M. Smith,et al.  Ice nucleation in orographic wave clouds: Measurements made during INTACC , 2001 .

[5]  G. Vali Atmospheric ice nucleation ― a review , 1985 .

[6]  H. Wernli,et al.  A novel model to predict the physical state of atmospheric H 2 SO 4 /NH 3 /H 2 O aerosol particles , 2002 .

[7]  B. Strauss,et al.  In-Situ Observations of the Microphysical Properties of Young Cirrus Clouds , 1997 .

[8]  B. Kärcher Contrails: Observations, Formation Mechanisms, Atmospheric Impacts, Uncertainties , 2000 .

[9]  M. Molina,et al.  Phase transitions of sea-salt/water mixtures at low temperatures: Implications for ozone chemistry in the polar marine boundary layer , 2000 .

[10]  B. Kärcher Properties of subvisible cirrus clouds formed by homogeneous freezing , 2002 .

[11]  W. T. Rawlins,et al.  Observation of hydration of single, modified carbon aerosols , 1994 .

[12]  M. Molina,et al.  Heterogeneous Freezing of Aqueous Particles Induced by Crystallized (NH4)2SO4, Ice, and Letovicite , 2001 .

[13]  I. Ford,et al.  Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts , 1999 .

[14]  O. Toon,et al.  The role of ammoniated aerosols in cirrus cloud nucleation , 1998 .

[15]  Kinetics of heterogeneous ice nucleation on the surfaces of mineral dust cores inserted into aqueous ammonium sulfate particles , 2003 .

[16]  S. Kreidenweis,et al.  Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere , 1998 .

[17]  A. Clarke,et al.  A Pacific Aerosol Survey. Part I: A Decade of Data on Particle Production, Transport, Evolution, and Mixing in the Troposphere* , 2002 .

[18]  D. Winker,et al.  Laminar cirrus observed near the tropical tropopause by LITE , 1998 .

[19]  C. H. B. Priestley,et al.  The physics of rainclouds , 1955 .

[20]  J. Heintzenberg,et al.  On the composition of non-volatile material in upper tropospheric aerosols and cirrus crystals , 1996 .

[21]  A. Mangold,et al.  Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA , 2002 .

[22]  U. Lohmann,et al.  First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model , 2002 .

[23]  Bruce E. Anderson,et al.  Ice nucleation processes in upper tropospheric wave‐clouds observed during SUCCESS , 1998 .

[24]  J. Wilson,et al.  A global black carbon aerosol model , 1996 .

[25]  U. Lohmann,et al.  A Parameterization of cirrus cloud formation: Homogeneous freezing including effects of aerosol size , 2002 .

[26]  A. Heymsfield,et al.  Cirrus crystal nucleation by homogeneous freezing of solution droplets , 1989 .

[27]  Mahoney,et al.  In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers , 1998, Science.

[28]  R. Jaenicke,et al.  The ice nucleating ability of pollen. Part I: Laboratory studies in deposition and condensation freezing modes , 2001 .

[29]  A. Petzold,et al.  Aerosol states in the free troposphere at northern midlatitudes , 2002 .

[30]  B. Kärcher,et al.  Numerical simulations of homogeneous freezing processes in the aerosol chamber AIDA , 2002 .

[31]  Andrew J. Heymsfield,et al.  Upper‐tropospheric relative humidity observations and implications for cirrus ice nucleation , 1998 .

[32]  M. Molina,et al.  Heterogeneous nucleation of ice in (NH4)2SO4‐H2O particles with mineral dust immersions , 2002 .

[33]  S. Kreidenweis,et al.  Measurements of ice nucleating aerosols during SUCCESS , 1998 .

[34]  Ulrike Lohmann,et al.  Impact of the Mount Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM4 GCM , 2003 .

[35]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[36]  Scot T. Martin,et al.  Phase Transitions of Aqueous Atmospheric Particles. , 2000, Chemical reviews.

[37]  U. Schumann,et al.  The Initial Composition of Jet Condensation Trails , 1996 .

[38]  J. Curry,et al.  A new theory of heterogeneous ice nucleation for application in cloud and climate models , 2000 .

[39]  Cynthia H. Twohy,et al.  Electron microscope analysis of residual particles from aircraft contrails , 1998 .

[40]  B. Luo,et al.  Water activity as the determinant for homogeneous ice nucleation in aqueous solutions , 2000, Nature.

[41]  Kenneth Sassen,et al.  Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research , 1992 .

[42]  S. Solomon,et al.  On the composition and optical extinction of particles in the tropopause region , 1999 .

[43]  P. Brown,et al.  Primary ice nucleation in orographic cirrus clouds: A numerical simulation of the microphysics , 1999 .

[44]  Kenneth Sassen,et al.  Haze Particle Nucleation Simulations in Cirrus Clouds, and Applications for Numerical and Lidar Studies , 1989 .

[45]  A. Heymsfield,et al.  Homogeneous Ice Nucleation and Supercooled Liquid Water in Orographic Wave Clouds , 1993 .

[46]  U. Schumann,et al.  Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes , 2003 .

[47]  U. Lohmann,et al.  A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols , 2002 .

[48]  S. Kreidenweis,et al.  The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components , 1997 .

[49]  S. Kreidenweis,et al.  Ice formation by black carbon particles , 1999 .

[50]  J. Ström,et al.  Real-time measurement of absorbing material in contrail ice using a counterflow virtual impactor , 1998 .

[51]  A. Heymsfield,et al.  Small ice crystals in cirrus clouds : A model study and comparison with in situ observations , 1998 .

[52]  The potential impact of soot particles from aircraft exhaust on cirrus clouds , 1997 .

[53]  V. Garten,et al.  Carbon Particles and Ice Nucleation , 1964, Nature.

[54]  K. Sassen,et al.  Ice nucleation in cirrus clouds: A model study of the homogeneous and heterogeneous modes , 2000 .

[55]  V. Garten,et al.  A Theoretical Basis of Ice Nucleation by Organic Crystals , 1965, Nature.

[56]  R. Rauber,et al.  Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall , 1986 .

[57]  Owen B. Toon,et al.  The potential effects of volcanic aerosols on cirrus cloud microphysics , 1992 .