HMBC-like experiment based on longitudinal csa/dipolar cross-correlation.

[1]  D. Fushman,et al.  Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G , 2003, Journal of biomolecular NMR.

[2]  D. Canet,et al.  Simulation of radio‐frequency field inhomogeneity effects: application to pulse trains aimed at the determination of CSA–dipolar interference terms , 2003 .

[3]  D. Fushman,et al.  Direct measurement of the transverse and longitudinal 15N chemical shift anisotropy–dipolar cross‐correlation rate constants using 1H‐coupled HSQC spectra , 2003 .

[4]  D. Canet,et al.  Heteronuclear Overhauser experiments for symmetric molecules , 2003 .

[5]  O. Walker,et al.  Determination of carbon-13 chemical shielding tensor in the liquid state by combining NMR relaxation experiments and quantum chemical calculations. , 2002, Journal of the American Chemical Society.

[6]  G. Batta,et al.  Separating structure and dynamics in CSA/DD cross-correlated relaxation: a case study on trehalose and ubiquitin. , 2001, Journal of magnetic resonance.

[7]  E. Zuiderweg,et al.  An iterative fitting procedure for the determination of longitudinal NMR cross-correlation rates. , 2000, Journal of magnetic resonance.

[8]  A. Gräslund,et al.  Quantitative estimation of magnitude and orientation of the CSA tensor from field dependence of longitudinal NMR relaxation rates , 1999, Journal of biomolecular NMR.

[9]  N. Tjandra,et al.  Direct Measurement of 15N Chemical Shift Anisotropy in Solution , 1998 .

[10]  C. Kroenke,et al.  Longitudinal and Transverse 1H−15N Dipolar/15N Chemical Shift Anisotropy Relaxation Interference: Unambiguous Determination of Rotational Diffusion Tensors and Chemical Exchange Effects in Biological Macromolecules , 1998 .

[11]  D. Cowburn,et al.  Model-Independent Analysis of 15N Chemical Shift Anisotropy from NMR Relaxation Data. Ubiquitin as a Test Example , 1998 .

[12]  A. Bax,et al.  Large Variations in 13Cα Chemical Shift Anisotropy in Proteins Correlate with Secondary Structure , 1997 .

[13]  R. Kaptein,et al.  QUANTITATIVE MEASUREMENT OF RELAXATION INTERFERENCE EFFECTS BETWEEN 1HN CSA AND 1H-15N DIPOLAR INTERACTION: CORRELATION WITH SECONDARY STRUCTURE , 1997 .

[14]  Ad Bax,et al.  Solution NMR Measurement of Amide Proton Chemical Shift Anisotropy in 15N-Enriched Proteins. Correlation with Hydrogen Bond Length§ , 1997 .

[15]  R. Boelens,et al.  Determination of Amide Proton CSA in15N-Labeled Proteins Using1H CSA/15N–1H Dipolar and15N CSA/15N–1H Dipolar Cross-Correlation Rates☆ , 1997 .

[16]  Ad Bax,et al.  Protein Backbone Dynamics and 15N Chemical Shift Anisotropy from Quantitative Measurement of Relaxation Interference Effects , 1996 .

[17]  G. Bodenhausen,et al.  Cross correlation of chemical shift anisotropy and dipolar interactions in methyl protons investigated by selective nuclear magnetic resonance spectroscopy , 1993 .

[18]  G. Bodenhausen,et al.  Observation of 2izsz order in NMR relaxation studies for measuring cross-correlation of chemical shift anisotropy and dipolar interactions , 1987 .

[19]  A. Bax,et al.  1H and13C Assignments from Sensitivity-Enhanced Detection of Heteronuclear Multiple-Bond Connectivity by 2D Multiple Quantum NMR , 1986 .

[20]  M. Goldman,et al.  Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei , 1984 .

[21]  F. Toma,et al.  Carbon-13 nuclear magnetic relaxation in carbon-13 uniformly enriched glycine and aspartic acid , 1983 .

[22]  G. Batta,et al.  A comparison of 1D and 2D (unbiased) experimental methods for measuring CSA/DD cross-correlated relaxation. , 1999, Journal of magnetic resonance.

[23]  C. Maclean,et al.  Chapter 4 Relaxation processes in systems of two non-identical spins , 1967 .