One-Droplet Synthesis of Polysaccharide/Metal–Organic Framework Aerogels for Gas Adsorption

[1]  Qingrun Li,et al.  Synthesis and shaping of metal-organic frameworks: a review. , 2022, Chemical communications.

[2]  B. Yuliarto,et al.  Template- and Etching-Free Fabrication of Two-Dimensional Hollow Bimetallic Metal-Organic Framework Hexagonal Nanoplates for Ammonia Sensing , 2022, Chemical Engineering Journal.

[3]  Z. Yang,et al.  Advanced MOFs@aerogel composites: Construction and application towards environmental remediation. , 2022, Journal of hazardous materials.

[4]  Nanxi Li,et al.  Metal‐Organic Framework Based Gas Sensors , 2021, Advanced science.

[5]  R. Mezzenga,et al.  Amyloid Fibril Templated MOF Aerogels for Water Purification. , 2021, Small.

[6]  Hilah C. Honig,et al.  3D Metal Carbide Aerogel Network as a Stable Catalyst for the Hydrogen Evolution Reaction , 2021, ACS Catalysis.

[7]  T. Budtova,et al.  Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview. , 2021, Carbohydrate polymers.

[8]  Y. Shin,et al.  Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook , 2021, Polymers.

[9]  Qichun Zhang,et al.  Recent Progress in Stimulus-Responsive Two-Dimensional Metal–Organic Frameworks , 2020 .

[10]  Xiaogang Zhang,et al.  A General Approach to Shaped MOF‐Containing Aerogels toward Practical Water Treatment Application , 2020, Advanced Sustainable Systems.

[11]  Bo Fu,et al.  Flexible Underwater Oleophobic Cellulose Aerogels for Efficient Oil/Water Separation , 2020, ACS omega.

[12]  Juming Yao,et al.  Robust, sustainable cellulose composite aerogels with outstanding flame retardancy and thermal insulation. , 2020, Carbohydrate polymers.

[13]  Zhongmin Su,et al.  Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb(II) removal. , 2019, Journal of colloid and interface science.

[14]  Luyu Wang,et al.  Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications , 2019, Coordination Chemistry Reviews.

[15]  Yi Li,et al.  Versatile Aerogels for Sensors. , 2019, Small.

[16]  Xiaogang Zhang,et al.  Advanced Nanoporous Material–Based QCM Devices: A New Horizon of Interfacial Mass Sensing Technology , 2019, Advanced Materials Interfaces.

[17]  Yaquan Wang,et al.  Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications , 2019, Chemical Engineering Journal.

[18]  Hai‐Long Jiang,et al.  Metal–organic frameworks: Structures and functional applications , 2019, Materials Today.

[19]  Qilong Ren,et al.  Shaping of ultrahigh-loading MOF pellet with a strongly anti-tearing binder for gas separation and storage , 2018, Chemical Engineering Journal.

[20]  Junwang Tang,et al.  Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion , 2018, Applied Catalysis B: Environmental.

[21]  E. Lester,et al.  Optimized synthesis of nano-scale high quality HKUST-1 under mild conditions and its application in CO2 capture , 2018, Microporous and Mesoporous Materials.

[22]  C. Erkey,et al.  An Emerging Family of Hybrid Nanomaterials: Metal–Organic Framework/Aerogel Composites , 2018, ACS Applied Nano Materials.

[23]  Gustav Nyström,et al.  Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. , 2018, Angewandte Chemie.

[24]  Jie Pang,et al.  Preparation of konjac glucomannan-based zeolitic imidazolate framework-8 composite aerogels with high adsorptive capacity of ciprofloxacin from water , 2018 .

[25]  Z. Cai,et al.  Highly Porous Polymer Aerogel Film‐Based Triboelectric Nanogenerators , 2018 .

[26]  I. Smirnova,et al.  Aerogel production: Current status, research directions, and future opportunities , 2017 .

[27]  Shiping Zhu,et al.  Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal–Organic‐Framework Particles for Separations Applications , 2016, Advanced materials.

[28]  Uroš Maver,et al.  Review of aerogel-based materials in biomedical applications , 2016, Journal of Sol-Gel Science and Technology.

[29]  Saffa Riffat,et al.  Toward aerogel based thermal superinsulation in buildings: A comprehensive review , 2014 .

[30]  A. Szczurek,et al.  Highly mesoporous organic aerogels derived from soy and tannin , 2012 .

[31]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[32]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[33]  L. O'Neill,et al.  Macro-/microporous MOF composite beads , 2010 .

[34]  Shih‐Yuan Lu,et al.  Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route , 2009 .

[35]  S. Gumma,et al.  Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101 , 2009 .

[36]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[37]  F. J. Maldonado-Hódar,et al.  Physicochemical Surface Properties of Fe, Co, Ni, and Cu-Doped Monolithic Organic Aerogels , 2003 .