HYPERELLIPTIC KLEINIAN FUNCTIONS AND APPLICATIONS
暂无分享,去创建一个
Victor Matveevich Buchstaber | V. Buchstaber | D. V. Leykin | V. Z. Enolskii | V. Enolskii | D. Leykin
[1] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[2] H. Baker. Abel's Theorem and the Allied Theory: Including the Theory of the Theta Functions , 2007 .
[3] H. F. Baker,et al. On the hyperelliptic sigma functions , 1898 .
[4] C. Weierstrass,et al. Zur Theorie der Abelschen Functionen. , 1854 .
[5] F. Klein. Ueber hyperelliptische Sigmafunctionen , 1886 .
[6] D. V. Leikin. On the Weierstrass cubic for hyperelliptic functions , 1995 .
[7] Igor Krichever,et al. METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONS , 1977 .
[8] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[9] Steven Roman. The Umbral Calculus , 1984 .
[10] John D. Fay. Theta Functions on Riemann Surfaces , 1973 .
[11] Fritz Gesztesy,et al. Treibich-Verdier potentials and the stationary (m)KDV hierarchy , 1995 .
[12] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[13] Fritz Gesztesy,et al. On Picard potentials , 1995, Differential and Integral Equations.
[14] W. Wirtinger,et al. Abelsche Funktionen und allgemeine Thetafunktionen , 1921 .
[15] G. B. Mathews,et al. Kummer's Quartic Surface , 1990 .
[16] J. M. Anderson,et al. RIEMANN SURFACES (Graduate Texts in Mathematics, 71) , 1982 .
[17] Joe W. Harris,et al. Principles of Algebraic Geometry , 1978 .
[18] David Mumford,et al. Curves and their Jacobians , 1975 .
[19] V. M. Bukhshtaber,et al. Abelian Bloch solutions of the two-dimensional Schrödinger equation , 1995 .
[20] E. Belokolos,et al. Algebro-geometric approach to nonlinear integrable equations , 1994 .
[21] V. Buchstaber,et al. Explicit algebraic description of hyperelliptic Jacobians on the basis of the Klein σ-functions , 1996 .