Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice

Cajal recognized that the elaborate shape of neurons is fundamental to their function in the brain. However, there are no simple and generalizable genetic methods to study neuronal or glial cell morphology in the mammalian brain. Here, we describe four mouse lines conferring Cre-dependent sparse cell labeling based on mononucleotide repeat frameshift (MORF) as a stochastic translational switch. Notably, the optimized MORF3 mice, with a membrane-bound multivalent immunoreporter, confer Cre-dependent sparse and bright labeling of thousands of neurons, astrocytes, or microglia in each brain, revealing their intricate morphologies. MORF3 mice are compatible with imaging in tissue-cleared thick brain sections and with immuno-EM. An analysis of 151 MORF3-labeled developing retinal horizontal cells reveals novel morphological cell clusters and axonal maturation patterns. Our study demonstrates a conceptually novel, simple, generalizable, and scalable mouse genetic solution to sparsely label and illuminate the morphology of genetically defined neurons and glia in the mammalian brain.

[1]  S. Shirazi Fard,et al.  Horizontal Cells, the Odd Ones Out in the Retina, Give Insights into Development and Disease , 2016, Front. Neuroanat..

[2]  Beth Stevens,et al.  Do glia drive synaptic and cognitive impairment in disease? , 2015, Nature Neuroscience.

[3]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[4]  Mei Kwan,et al.  Comprehensive Behavioral and Molecular Characterization of a New Knock-In Mouse Model of Huntington’s Disease: zQ175 , 2012, PloS one.

[5]  Jean Livet,et al.  Sparse and combinatorial neuron labelling , 2012, Current Opinion in Neurobiology.

[6]  D. Holtzman,et al.  Alzheimer Disease: An Update on Pathobiology and Treatment Strategies , 2019, Cell.

[7]  J. Boulter,et al.  Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels123 , 2016, eNeuro.

[8]  M. Tachibana,et al.  Versatile functional roles of horizontal cells in the retinal circuit , 2017, Scientific Reports.

[9]  N. Renier,et al.  iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging , 2014, Cell.

[10]  Jos Jonkers,et al.  Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. , 2007, Physiological genomics.

[11]  S. Herculano‐Houzel The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost , 2012, Proceedings of the National Academy of Sciences.

[12]  W. Stanford,et al.  The GPI-Linked Protein LY6A Drives AAV-PHP.B Transport across the Blood-Brain Barrier. , 2019, Molecular therapy : the journal of the American Society of Gene Therapy.

[13]  S. Herculano‐Houzel,et al.  The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting , 2016, The Journal of comparative neurology.

[14]  Jinhyun Kim,et al.  neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on the SWC Format 123 , 2015, eNeuro.

[15]  Charles R. Gerfen,et al.  High-performance probes for light and electron microscopy , 2015, Nature Methods.

[16]  D. Kerschensteiner,et al.  Synapse maintenance and restoration in the retina by NGL2 , 2018, eLife.

[17]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[18]  Ian R. Wickersham,et al.  The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas , 2017, Neuron.

[19]  J. Javitch,et al.  Evidence for limited D1 and D2 receptor coexpression and colocalization within the dorsal striatum of the neonatal mouse , 2015, The Journal of comparative neurology.

[20]  R. Wong,et al.  Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions , 2008, Nature Neuroscience.

[21]  F. Alt,et al.  Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Shaoqun Zeng,et al.  Brain-wide single neuron reconstruction reveals morphological diversity in molecularly defined striatal, thalamic, cortical and claustral neuron types , 2019, bioRxiv.

[23]  Elina A K Jacobs,et al.  Aberrant Cortical Activity in Multiple GCaMP6-Expressing Transgenic Mouse Lines , 2017, eNeuro.

[24]  Z Josh Huang,et al.  The diversity of GABAergic neurons and neural communication elements , 2019, Nature Reviews Neuroscience.

[25]  Bin Zhang,et al.  Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R , 2008, Bioinform..

[26]  Rainer Heintzmann,et al.  Breaking the resolution limit in light microscopy. , 2013, Methods in cell biology.

[27]  R. Wilcox Introduction to Robust Estimation and Hypothesis Testing , 1997 .

[28]  T. Svitkina,et al.  Imaging cytoskeleton components by electron microscopy. , 2009, Methods in molecular biology.

[29]  John Hardy,et al.  Selective vulnerability in neurodegenerative diseases , 2018, Nature Neuroscience.

[30]  R. Wong,et al.  Diverse Strategies Engaged in Establishing Stereotypic Wiring Patterns among Neurons Sharing a Common Input at the Visual System's First Synapse , 2012, The Journal of Neuroscience.

[31]  Nicholas N. Foster,et al.  The mouse cortico-striatal projectome , 2016, Nature Neuroscience.

[32]  K. Yamamura,et al.  Efficiency of recombination by Cre transient expression in embryonic stem cells: comparison of various promoters. , 1997, Journal of biochemistry.

[33]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[34]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[35]  Michael Z. Lin,et al.  A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality , 2018, Cell.

[36]  Zheng-Xiong Xi,et al.  Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia , 2017, Neuron.

[37]  Nan Wang,et al.  Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease , 2014, Nature Medicine.

[38]  W. Denk,et al.  The Big and the Small: Challenges of Imaging the Brain’s Circuits , 2011, Science.

[39]  Michael W. Davidson,et al.  A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum , 2013, Nature Methods.

[40]  A. Bhargava,et al.  Mutational Dynamics of Microsatellites , 2010, Molecular biotechnology.

[41]  B. Reese,et al.  Retinal horizontal cells: challenging paradigms of neural development and cancer biology , 2009, Development.

[42]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[43]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[44]  J. Yates,et al.  Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor , 2013, Cell.

[45]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[46]  J. Lichtman,et al.  From Cajal to Connectome and Beyond. , 2016, Annual review of neuroscience.

[47]  Karel Svoboda,et al.  A platform for brain-wide imaging and reconstruction of individual neurons , 2016, eLife.

[48]  M. Lavail,et al.  Timing and topography of cell genesis in the rat retina , 2004, The Journal of comparative neurology.

[49]  L. Luo Fly MARCM and mouse MADM: Genetic methods of labeling and manipulating single neurons , 2007, Brain Research Reviews.

[50]  J. Nathans,et al.  New Mouse Lines for the Analysis of Neuronal Morphology Using CreER(T)/loxP-Directed Sparse Labeling , 2009, PloS one.

[51]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[52]  E. Nevo,et al.  Microsatellites within genes: structure, function, and evolution. , 2004, Molecular biology and evolution.

[53]  L. Luo,et al.  Mosaic Analysis with Double Markers in Mice , 2005, Cell.

[54]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[55]  Cheuk Y. Tang,et al.  Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes , 2016, Cell.

[56]  Henry Markram,et al.  A Cell Atlas for the Mouse Brain , 2018, Front. Neuroinform..

[57]  T. Golde,et al.  Microglia-specific targeting by novel capsid-modified AAV6 vectors , 2016, Molecular therapy. Methods & clinical development.

[58]  Brian R. Lee,et al.  Classification of electrophysiological and morphological neuron types in the mouse visual cortex , 2019, Nature Neuroscience.

[59]  R. W. Young Cell differentiation in the retina of the mouse , 1985, The Anatomical record.

[60]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[61]  Charles R. Gerfen,et al.  Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain , 2019, Cell.

[62]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[63]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[64]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[65]  R. Adalbert,et al.  Review: Axon pathology in age‐related neurodegenerative disorders , 2013, Neuropathology and applied neurobiology.

[66]  V. Gradinaru,et al.  Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems , 2017, Nature Neuroscience.

[67]  D. Chklovskii,et al.  Class-Specific Features of Neuronal Wiring , 2004, Neuron.

[68]  J. Lichtman,et al.  Serial-section electron microscopy using automated tape-collecting ultramicrotome (ATUM). , 2019, Methods in cell biology.

[69]  Thomas Euler,et al.  How do horizontal cells ‘talk’ to cone photoreceptors? Different levels of complexity at the cone–horizontal cell synapse , 2017, The Journal of physiology.

[70]  Hong Wei Dong,et al.  Allen reference atlas : a digital color brain atlas of the C57Black/6J male mouse , 2008 .

[71]  S. Herculano‐Houzel,et al.  Cellular scaling rules for rodent brains , 2006, Proceedings of the National Academy of Sciences.

[72]  L. Peichl,et al.  Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.

[73]  Philippe Soriano Generalized lacZ expression with the ROSA26 Cre reporter strain , 1999, Nature Genetics.

[74]  X. W. Yang,et al.  Genetically-directed Sparse Neuronal Labeling in BAC Transgenic Mice through Mononucleotide Repeat Frameshift , 2017, Scientific Reports.

[75]  H. Tao,et al.  Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. , 2018, Cerebral cortex.

[76]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[77]  G. Aghajanian,et al.  Synaptic Dysfunction in Depression: Potential Therapeutic Targets , 2012, Science.

[78]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[79]  Peyman Golshani,et al.  New Transgenic Mouse Lines for Selectively Targeting Astrocytes and Studying Calcium Signals in Astrocyte Processes In Situ and In Vivo , 2016, Neuron.

[80]  M. Greschner,et al.  Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells , 2018, The Journal of Neuroscience.

[81]  D. Surmeier,et al.  Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[82]  N. Gemmell,et al.  The rise, fall and renaissance of microsatellites in eukaryotic genomes. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[83]  H. Wässle,et al.  Immunocytochemical analysis of the mouse retina , 2000, The Journal of comparative neurology.

[84]  A. Shih,et al.  Combining serial block face and focused ion beam scanning electron microscopy for 3D studies of rare events. , 2019, Methods in cell biology.

[85]  Jeremy Nathans,et al.  A Noninvasive Genetic/Pharmacologic Strategy for Visualizing Cell Morphology and Clonal Relationships in the Mouse , 2003, The Journal of Neuroscience.

[86]  Cornelia I Bargmann,et al.  The Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) initiative and neurology. , 2014, JAMA neurology.

[87]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[88]  Robert W. Williams,et al.  Genetic modulation of horizontal cell number in the mouse retina , 2011, Proceedings of the National Academy of Sciences.

[89]  I. Módy,et al.  Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer’s Disease Models , 2018, Neuron.

[90]  R. Wong,et al.  Transmission from the dominant input shapes the stereotypic ratio of photoreceptor inputs onto horizontal cells , 2014, Nature Communications.

[91]  M. A. Raven,et al.  Afferent Control of Horizontal Cell Morphology Revealed by Genetic Respecification of Rods and Cones , 2007, The Journal of Neuroscience.

[92]  B. Roska,et al.  How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse , 2018, Neuron.

[93]  Jeff W. Lichtman,et al.  Clarifying Tissue Clearing , 2015, Cell.

[94]  Liqun Luo,et al.  Site-specific integrase-mediated transgenesis in mice via pronuclear injection , 2011, Proceedings of the National Academy of Sciences.

[95]  B. Khakh,et al.  Unravelling and Exploiting Astrocyte Dysfunction in Huntington’s Disease , 2017, Trends in Neurosciences.

[96]  Changle Zhou,et al.  Precise segmentation of densely interweaving neuron clusters using G-Cut , 2019, Nature Communications.

[97]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.