Computational aspects of dispersive computational continua for elastic heterogeneous media

The present manuscript focusses on computational aspects of dispersive computational continua ($$C^2$$C2) formulation previously introduced by the authors. The dispersive $$C^2$$C2 formulation is a multiscale approach that showed strikingly accurate dispersion curves. However, the seemingly theoretical advantage may be inconsequential due to tremendous computational cost involved. Unlike classical dispersive methods pioneered more than a half a century ago where the unit cell is quasi-static and provides effective mechanical and dispersive properties to the coarse-scale problem, the dispersive $$C^2$$C2 gives rise to transient problems at all scales and for all microphases involved. An efficient block time-integration scheme is proposed that takes advantage of the fact that the transient unit cell problems are not coupled to each other, but rather to a single coarse-scale finite element they are positioned in. We show that the computational cost of the method is comparable to the classical dispersive methods for short load durations.

[1]  Haim Waisman,et al.  A Space-Time Multilevel Method For Molecular Dynamics Simulations , 2006 .

[2]  Julius Kaplunov,et al.  High frequency homogenization for structural mechanics , 2011 .

[3]  Tong Hui,et al.  A nonlocal homogenization model for wave dispersion in dissipative composite materials , 2013 .

[4]  Claude Boutin,et al.  Long wavelength inner-resonance cut-off frequencies in elastic composite materials , 2012 .

[5]  Jacob Fish,et al.  A generalized space–time mathematical homogenization theory for bridging atomistic and continuum scales , 2006 .

[6]  Jacob Fish,et al.  Micro-inertia effects in nonlinear heterogeneous media , 2012 .

[7]  Jacob Fish,et al.  Computational continua revisited , 2015 .

[8]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[9]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[10]  A. Bedford,et al.  On Wave Propagation in Fiber-Reinforced Viscoelastic Materials , 1970 .

[11]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[12]  Jd Achenbach Jd WAVE MOTION IN SOLIDS WITH LAMELLAR STRUCTURING , 1968 .

[13]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[14]  Jacob Fish,et al.  Adaptive generalized mathematical homogenization framework for nanostructured materials , 2010 .

[15]  Peter Wriggers,et al.  Introduction to Computational Micromechanics (Lecture Notes in Applied and Computational Mechanics) , 2004 .

[16]  Haim Waisman,et al.  A Space-Time Multiscale Method for Molecular Dynamics Simulations of Biomolecules , 2006 .

[17]  Tong Hui,et al.  Laplace‐domain, high‐order homogenization for transient dynamic response of viscoelastic composites , 2015 .

[18]  J. Auriault,et al.  Homogenization of Coupled Phenomena in Heterogenous Media , 2009 .

[19]  Sia Nemat-Nasser,et al.  Overall dynamic constitutive relations of layered elastic composites , 2011, 1105.5173.

[20]  Wing Kam Liu,et al.  Multi-scale finite element methods for structural dynamics , 1991 .

[21]  Jacob Fish,et al.  Dispersive computational continua , 2016 .

[22]  Chunyin Qiu,et al.  Metamaterial with simultaneously negative bulk modulus and mass density. , 2007, Physical review letters.

[23]  Dieter Weichert,et al.  Higher order asymptotic homogenization and wave propagation in periodic composite materials , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Tong Hui,et al.  A high order homogenization model for transient dynamics of heterogeneous media including micro-inertia effects , 2014 .

[25]  Marcus J. Grote,et al.  Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long-Time Effects , 2014, Multiscale Model. Simul..

[26]  E Weinan,et al.  Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .

[27]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[28]  James Clerk Maxwell,et al.  The Scientific Papers of James Clerk Maxwell: Van der Waals on the Continuity of the Gaseous and Liquid States , 2011 .

[29]  Julius Kaplunov,et al.  HIGH FREQUENCY ASYMPTOTICS, HOMOGENIZATION AND LOCALIZATION FOR LATTICES , 2010 .

[30]  Jacob Fish,et al.  Higher-Order Homogenization of Initial/Boundary-Value Problem , 2001 .

[31]  Adnan H. Nayfeh,et al.  A Continuum Approach to the Propagation of Shear Waves in Laminated Wave Guides , 1974 .

[32]  Valery M. Levin,et al.  Self-consistent methods in the problem of axial elastic shear wave propagation through fiber composites , 2003 .

[33]  J. Willis,et al.  A simple self-consistent analysis of wave propagation in particulate composites , 1988 .

[34]  Marc G. D. Geers,et al.  Transient computational homogenization for heterogeneous materials under dynamic excitation , 2013 .

[35]  R. Clausius,et al.  XVI. On a mechanical theorem applicable to heat , 1870 .

[36]  Jacob Fish,et al.  Generalized Mathematical Homogenization: From theory to practice , 2008 .

[37]  J. CLERK-MAXWELL,et al.  O ver de contimiiteit van den gas- en vloeistofiocstand Academisch proefschrift , 1874, Nature.

[38]  Jacob Fish,et al.  A mathematical homogenization perspective of virial stress , 2006 .

[39]  R. V. Craster,et al.  High-frequency homogenization for periodic media , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[41]  Jacob Fish,et al.  Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions , 2007 .