D ec 2 01 3 The Multiscale Loop Vertex Expansion

The loop vertex expansion (LVE) is a constructive technique which uses only canonical combinatorial tools and no space-time dependent lattices. It works for quantum field theories without renormalization. Renormalization requires scale analysis. In this paper we provide an enlarged formalism which we call the multiscale loop vertex expansion (MLVE). We test it on what is probably the simplest quantum field theory which requires some kind of renormalization, namely a combinatorial model of the vector type with quartic interaction and a propagator which mimicks the power counting of φ42. An ordinary LVE would fail to treat even this simplest superrenormalizable model, but we show how to perform the ultraviolet limit and prove its analyticity in the Borel summability domain of the model with the MLVE.

[1]  Grosse,et al.  M ay 2 01 3 Self-dual noncommutative φ 4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory , 2018 .

[2]  V. Rivasseau,et al.  Renormalization of a SU(2) Tensorial Group Field Theory in Three Dimensions , 2014, Communications in Mathematical Physics.

[3]  V. Rivasseau The tensor track, III , 2013, 1311.1461.

[4]  V. Rivasseau,et al.  Generalized Constructive Tree Weights , 2013, 1310.2424.

[5]  R. Gurau The 1/N Expansion of Tensor Models Beyond Perturbation Theory , 2013, 1304.2666.

[6]  Sylvain Carrozza,et al.  Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions , 2012, 1207.6734.

[7]  D. O. Samary,et al.  3D Tensor Field Theory: Renormalization and One-Loop β-Functions , 2013 .

[8]  J. B. Geloun Renormalizable Models in Rank $${d \geq 2}$$d≥2 Tensorial Group Field Theory , 2013, 1306.1201.

[9]  V. Rivasseau,et al.  How to Resum Feynman Graphs , 2013, 1304.5913.

[10]  J. B. Geloun Two- and four-loop β-functions of rank-4 renormalizable tensor field theories , 2012, 1205.5513.

[11]  J. Ryan,et al.  Colored Tensor Models - a Review , 2011, 1109.4812.

[12]  Joseph Ben Geloun,et al.  A Renormalizable 4-Dimensional Tensor Field Theory , 2011, 1111.4997.

[13]  V. Rivasseau,et al.  Loop Vertex Expansion for Phi^2k Theory in Zero Dimension , 2010, 1003.1037.

[14]  H. Grosse,et al.  Progress in solving a noncommutative quantum field theory in four dimensions , 2009, 0909.1389.

[15]  M. Smerlak,et al.  Scaling behavior of three-dimensional group field theory , 2009, 0906.5477.

[16]  V. Rivasseau,et al.  Constructive ϕ4 Field Theory without Tears , 2007, 0706.2457.

[17]  V. Rivasseau Constructive matrix theory , 2007, 0706.1224.

[18]  M. Disertori,et al.  Vanishing of beta function of non-commutative Φ 4 4 theory to all orders , 2006, hep-th/0612251.

[19]  H. Grosse,et al.  Renormalisation of ϕ4-Theory on Noncommutative ℝ4 in the Matrix Base , 2004, hep-th/0401128.

[20]  M. Disertori,et al.  Continuous Constructive Fermionic Renormalization , 1998, hep-th/9802145.

[21]  V. Rivasseau,et al.  Explicit Fermionic Tree Expansions , 1997, cond-mat/9712055.

[22]  V. Rivasseau,et al.  Trees, forests and jungles: a botanical garden for cluster expansions , 1994, hep-th/9409094.

[23]  P. Francesco,et al.  2D gravity and random matrices , 1993, hep-th/9306153.

[24]  Vincent Rivasseau,et al.  From Perturbative to Constructive Renormalization , 1991 .

[25]  T. Kennedy,et al.  Mayer expansions and the Hamilton-Jacobi equation , 1987 .

[26]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .