Parameterized Model Checking of Synchronous Distributed Algorithms by Abstraction

Parameterized verification of fault-tolerant distributed algorithms has recently gained more and more attention. Most of the existing work considers asynchronous distributed systems (interleaving semantics). However, there exists a considerable distributed computing literature on synchronous fault-tolerant distributed algorithms: conceptually, all processes proceed in lock-step rounds, that is, synchronized steps of all (correct) processes bring the system into the next state.

[1]  Brett D. Fleisch,et al.  The Chubby lock service for loosely-coupled distributed systems , 2006, OSDI '06.

[2]  Hassen Saïdi,et al.  Construction of Abstract State Graphs with PVS , 1997, CAV.

[3]  Helmut Veith,et al.  On the completeness of bounded model checking for threshold-based distributed algorithms: Reachability , 2014, Inf. Comput..

[4]  André Schiper,et al.  The Heard-Of model: computing in distributed systems with benign faults , 2009, Distributed Computing.

[5]  André Schiper,et al.  Uniform consensus is harder than consensus , 2004, J. Algorithms.

[6]  Thomas A. Henzinger,et al.  A Logic-Based Framework for Verifying Consensus Algorithms , 2014, VMCAI.

[7]  Thomas A. Henzinger,et al.  PSync: a partially synchronous language for fault-tolerant distributed algorithms , 2016, POPL.

[8]  Josef Widder,et al.  Synchronous Consensus with Mortal Byzantines , 2007, 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07).

[9]  Kedar S. Namjoshi,et al.  Reasoning about rings , 1995, POPL '95.

[10]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[11]  Dana Fisman,et al.  On Verifying Fault Tolerance of Distributed Protocols , 2008, TACAS.

[12]  Helmut Veith,et al.  Proving Ptolemy Right: The Environment Abstraction Framework for Model Checking Concurrent Systems , 2008, TACAS.

[13]  Patrick Lincoln,et al.  A formally verified algorithm for interactive consistency under a hybrid fault model , 1993, FTCS-23 The Twenty-Third International Symposium on Fault-Tolerant Computing.

[14]  Adam Chlipala,et al.  Chapar: certified causally consistent distributed key-value stores , 2016, POPL.

[15]  Michel Raynal,et al.  Early Decision and Stopping in Synchronous Consensus: A Predicate-Based Guided Tour , 2017, NETYS.

[16]  Tatsuhiro Tsuchiya,et al.  Verification of consensus algorithms using satisfiability solving , 2011, Distributed Computing.

[17]  RoderickBloem,et al.  Decidability of Parameterized Verification , 2015 .

[18]  Helmut Veith,et al.  Para\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}2: parameterized path reduction, acceleration, a , 2017, Formal Methods in System Design.

[19]  Günter Grünsteidl,et al.  TTP - A Protocol for Fault-Tolerant Real-Time Systems , 1994, Computer.

[20]  Ramakrishna Kotla,et al.  Zyzzyva , 2007, SOSP.

[21]  Krzysztof R. Apt,et al.  Limits for Automatic Verification of Finite-State Concurrent Systems , 1986, Inf. Process. Lett..

[22]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[23]  Kenneth L. McMillan,et al.  Parameterized Verification of the FLASH Cache Coherence Protocol by Compositional Model Checking , 2001, CHARME.

[24]  Edmund M. Clarke,et al.  Reasoning about Networks with Many Identical Finite State Processes , 1989, Inf. Comput..

[25]  Helmut Veith,et al.  Parameterized model checking of fault-tolerant distributed algorithms by abstraction , 2013, 2013 Formal Methods in Computer-Aided Design.

[26]  Helmut Veith,et al.  Towards Modeling and Model Checking Fault-Tolerant Distributed Algorithms , 2013, SPIN.

[27]  Leslie Lamport,et al.  Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers [Book Review] , 2002, Computer.

[28]  Sava Krstić Parametrized System Verification with Guard Strengthening and Parameter Abstraction , 2005 .

[29]  Amir Pnueli,et al.  Liveness with (0, 1, infty)-Counter Abstraction , 2002, CAV.

[30]  A. Prasad Sistla,et al.  Symmetry and model checking , 1993, Formal Methods Syst. Des..

[31]  Kenneth L. McMillan,et al.  Verification of Infinite State Systems by Compositional Model Checking , 1999, CHARME.

[32]  Stephan Merz,et al.  A Reduction Theorem for the Verification of Round-Based Distributed Algorithms , 2009, RP.

[33]  Jan Maluszy¿ski Verification, Model Checking, and Abstract Interpretation , 2009, Lecture Notes in Computer Science.

[34]  Helmut Veith,et al.  Environment Abstraction for Parameterized Verification , 2006, VMCAI.

[35]  Nikolaj Bjørner,et al.  Cardinalities and universal quantifiers for verifying parameterized systems , 2016, PLDI.

[36]  Helmut Veith,et al.  Decidability of Parameterized Verification , 2015, Synthesis Lectures on Distributed Computing Theory.

[37]  Seungjoon Park,et al.  A Simple Method for Parameterized Verification of Cache Coherence Protocols , 2004, FMCAD.

[38]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1983, PODS '83.

[39]  Amin Vahdat,et al.  Mace: language support for building distributed systems , 2007, PLDI '07.

[40]  Mark R. Tuttle,et al.  Protocol verification using flows: An industrial experience , 2009, 2009 Formal Methods in Computer-Aided Design.

[41]  Maria Sorea,et al.  Model checking a fault-tolerant startup algorithm: from design exploration to exhaustive fault simulation , 2004, International Conference on Dependable Systems and Networks, 2004.

[42]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[43]  C. Aiswarya,et al.  An automata-theoretic approach to the verification of distributed algorithms , 2018, Inf. Comput..

[44]  Ichiro Suzuki,et al.  Proving Properties of a Ring of Finite-State Machines , 1988, Inf. Process. Lett..

[45]  David G. Andersen,et al.  There is more consensus in Egalitarian parliaments , 2013, SOSP.

[46]  David A. Basin,et al.  Cutoff Bounds for Consensus Algorithms , 2017, CAV.

[47]  Elena Pagani,et al.  Counter Abstractions in Model Checking of Distributed Broadcast Algorithms: Some Case Studies , 2016, CILC.

[48]  André Medeiros,et al.  ZooKeeper ’ s atomic broadcast protocol : Theory and practice , 2012 .

[49]  Michael D. Ernst,et al.  Planning for change in a formal verification of the raft consensus protocol , 2016, CPP.

[50]  Roberto Palmieri,et al.  Making Fast Consensus Generally Faster , 2016, 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[51]  Helmut Veith,et al.  Parameterized model checking of rendezvous systems , 2014, Distributed Computing.

[52]  Edmund M. Clarke,et al.  Model checking and abstraction , 1994, TOPL.

[53]  Helmut Veith,et al.  A short counterexample property for safety and liveness verification of fault-tolerant distributed algorithms , 2016, POPL.