Well-posedness of the MHD Boundary Layer System in Gevrey Function Space without Structural Assumption

We establish the well-posedness of the MHD boundary layer system in Gevrey function space without any structural assumption. Compared to the classical Prandtl equation, the loss of tangential derivative comes from both the velocity and magnetic fields that are coupled with each other. By observing a new type of cancellation mechanism in the system for overcoming the loss derivative degeneracy, we show that the MHD boundary layer system is well-posed with Gevrey index up to $3/2$ in both two and three dimensional spaces.

[1]  V. Vicol,et al.  Almost Global Existence for the Prandtl Boundary Layer Equations , 2015, 1502.04319.

[2]  M. Núñez MHD shear flows with non-constant transverse magnetic field , 2012 .

[3]  Sameer Iyer Global Steady Prandtl Expansion over a Moving Boundary III , 2020, Peking Mathematical Journal.

[4]  Yan Guo,et al.  Prandtl Boundary Layer Expansions of Steady Navier–Stokes Flows Over a Moving Plate , 2014, 1411.6984.

[5]  D. Gérard-Varet,et al.  Formal derivation and stability analysis of boundary layer models in MHD , 2016, 1612.02641.

[6]  Tong Yang,et al.  A note on the ill-posedness of shear flow for the MHD boundary layer equations , 2018, Science China Mathematics.

[7]  Zhouping Xin,et al.  On the global existence of solutions to the Prandtl's system , 2004 .

[8]  Radjesvarane Alexandre,et al.  Well-posedness of the Prandtl equation in Sobolev spaces , 2012, 1203.5991.

[9]  Zhifei Zhang,et al.  Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow , 2016, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[10]  Hölder Continuous Solutions to the Three-dimensional Prandtl System , 2018, 1804.04285.

[11]  Igor Kukavica,et al.  On the local existence of analytic solutions to the Prandtl boundary layer equations , 2013 .

[12]  Tong Yang,et al.  Well‐Posedness in Gevrey Function Space for 3D Prandtl Equations without Structural Assumption , 2020, Communications on Pure and Applied Mathematics.

[13]  Yasunori Maekawa,et al.  On the Inviscid Limit Problem of the Vorticity Equations for Viscous Incompressible Flows in the Half‐Plane , 2012 .

[14]  I. Kukavica,et al.  The van Dommelen and Shen singularity in the Prandtl equations , 2015, 1512.07358.

[15]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations , 1998 .

[16]  Tong Yang,et al.  Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces , 2020, 2002.11888.

[17]  Tong Yang,et al.  Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points , 2019, Journal of the European Mathematical Society.

[18]  Tong Yang,et al.  Well-posedness in Gevrey function space for the three-dimensional Prandtl equations , 2017, 1708.08217.

[19]  Yan Guo,et al.  Validity of steady Prandtl layer expansions , 2018, Communications on Pure and Applied Mathematics.

[20]  Igor Kukavica,et al.  On the Local Well-posedness of the Prandtl and Hydrostatic Euler Equations with Multiple Monotonicity Regions , 2014, SIAM J. Math. Anal..

[21]  Yan Guo,et al.  A note on Prandtl boundary layers , 2010, 1011.0130.

[22]  Fanghua Lin,et al.  On Current Developments in Partial Differential Equations , 2020 .

[23]  Sameer Iyer Global Steady Prandtl Expansion over a Moving Boundary III , 2019, Peking Mathematical Journal.

[24]  E Weinan,et al.  BLOWUP OF SOLUTIONS OF THE UNSTEADY PRANDTL'S EQUATION , 1997 .

[25]  Nader Masmoudi,et al.  Local‐in‐Time Existence and Uniqueness of Solutions to the Prandtl Equations by Energy Methods , 2012, 1206.3629.

[26]  V. N. Samokhin,et al.  Mathematical Models in Boundary Layer Theory , 1999 .

[27]  Zhifei Zhang,et al.  Zero-Viscosity Limit of the Navier–Stokes Equations in the Analytic Setting , 2017 .

[28]  Global Existence and the Decay of Solutions to the Prandtl System with Small Analytic Data , 2019, Archive for Rational Mechanics and Analysis.

[29]  Tong Yang,et al.  A well-posedness theory for the Prandtl equations in three space variables , 2014, 1405.5308.

[30]  Tong Yang,et al.  Justification of Prandtl Ansatz for MHD Boundary Layer , 2017, SIAM J. Math. Anal..

[31]  Di Wu,et al.  Gevrey Class Smoothing Effect for the Prandtl Equation , 2015, SIAM J. Math. Anal..

[32]  Tong Yang,et al.  On the Ill-Posedness of the Prandtl Equations in Three-Dimensional Space , 2014, 1412.2843.

[33]  Zhifei Zhang,et al.  On the zero-viscosity limit of the Navier–Stokes equations in R+3 without analyticity , 2017 .

[34]  D. Gérard-Varet,et al.  Sobolev Stability of Prandtl Expansions for the Steady Navier–Stokes Equations , 2018, Archive for Rational Mechanics and Analysis.

[35]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution , 1998 .

[36]  Tong Yang,et al.  MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity I: Well‐Posedness Theory , 2016, Communications on Pure and Applied Mathematics.

[37]  Chao-Jiang Xu,et al.  Long time well-posdness of the Prandtl equations in Sobolev space , 2015, 1511.04850.

[38]  Emmanuel Dormy,et al.  On the ill-posedness of the Prandtl equation , 2009, 0904.0434.

[39]  N. Masmoudi,et al.  Gevrey stability of Prandtl expansions for 2-dimensional Navier–Stokes flows , 2016, Duke Mathematical Journal.

[40]  Ping Zhang,et al.  Long time well-posdness of Prandtl system with small and analytic initial data , 2014, 1409.1648.

[41]  N. Masmoudi,et al.  Optimal Prandtl expansion around concave boundary layer , 2020, 2005.05022.

[42]  Yan Guo,et al.  Regularity and Expansion for Steady Prandtl Equations , 2019, Communications in Mathematical Physics.

[43]  Marco Cannone,et al.  Well-Posedness of the Boundary Layer Equations , 2003, SIAM J. Math. Anal..

[44]  D. Gérard-Varet,et al.  Well-Posedness of the Prandtl Equations Without Any Structural Assumption , 2018, Annals of PDE.