Advances in Artificial Intelligence

A frame resolution reduction framework to reduce the computational load and improve the foreground detection in video sequences is presented in this work. The proposed framework consists of three different stages. Firstly, the original video frame is downsampled using a specific interpolation function. Secondly, a foreground detection of the reduced video frame is performed by a probabilistic background model called MFBM. Finally, the class probabilities for the reduced video frame are upsampled using a bicubic interpolation to estimate the class probabilities of the original frame. Experimental results applied to standard benchmark video sequences demonstrate the goodness of our proposal.

[1]  Emanuele Frontoni,et al.  A Visual Global Positioning System for Unmanned Aerial Vehicles Used in Photogrammetric Applications , 2011, J. Intell. Robotic Syst..

[2]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[3]  David Heckerman,et al.  Learning Gaussian Networks , 1994, UAI.

[4]  A. R. Roy,et al.  An application of soft sets in a decision making problem , 2002 .

[5]  Kanti V. Mardia,et al.  Bayesian analysis for bivariate von Mises distributions , 2010 .

[6]  Hetunandan Kamisetty,et al.  The von Mises Graphical Model: Regularized Structure and Parameter Learning (CMU-CS-11-129/CMU-CB-11-101) , 2011 .

[7]  J. Kent The Fisher‐Bingham Distribution on the Sphere , 1982 .

[8]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[9]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[10]  Shogo Kato,et al.  A distribution for a pair of unit vectors generated by Brownian motion , 2009, 0909.1221.

[11]  Terje O. Espelid,et al.  An adaptive algorithm for the approximate calculation of multiple integrals , 1991, TOMS.

[12]  P. McCullagh Möbius transformation and Cauchy parameter estimation , 1996 .

[13]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[14]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[15]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[16]  Shogo Kato,et al.  A Möbius transformation-induced distribution on the torus , 2015 .

[17]  Concha Bielza,et al.  Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex , 2016, The Journal of comparative neurology.

[18]  E. Batschelet Circular statistics in biology , 1981 .

[19]  Ying Zhou,et al.  Soft discernibility matrix and its applications in decision making , 2014, Appl. Soft Comput..

[20]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[21]  Kiheung Kim Protein , 2005, The Lancet.

[22]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[23]  Paul Levy,et al.  L'addition des variables aléatoires définies sur une circonférence , 1939 .

[24]  Paul Van Dooren,et al.  An adaptive algorithm for numerical integration over the n-cube , 1976 .

[25]  Liqun Gao,et al.  Letter to the editor: Comment on A fuzzy soft set theoretic approach to decision making problems , 2009 .

[26]  Naim Çag ˘ man,et al.  Soft set theory and uni-int decision making , 2010 .

[27]  José Carlos Rodriguez Alcantud,et al.  A novel algorithm for fuzzy soft set based decision making from multiobserver input parameter data set , 2016, Inf. Fusion.

[28]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[29]  Kanti V. Mardia,et al.  A multivariate von mises distribution with applications to bioinformatics , 2008 .