Fast gait parameter estimation for frontal view gait video data based on the model selection and parameter optimization approach

We study the problem of analyzing and classifying frontal view gait video data. In this study, we focus on the human walking speed and amplitude of arm swing and leg swing, we estimate these parameters using the statistical registration and modeling on a video data. To demonstrate the effectiveness of our method, we apply our gait parameter estimation model for the human gait video data. As a result, our model is able to estimate the gait parameters by stably at low calculation cost.

[1]  Maricor Soriano,et al.  Curve spreads--a biometric from front-view gait video , 2004, Pattern Recognit. Lett..

[2]  M. M. van der Krogt,et al.  Reproducibility and validity of video screen measurements of gait in children with spastic cerebral palsy. , 2010, Gait & posture.

[3]  Marc Van Droogenbroeck,et al.  Frontal-view gait recognition by intra- and inter-frame rectangle size distribution , 2009, Pattern Recognit. Lett..

[4]  Saeid Sanei,et al.  Fronto-normal gait incorporating accurate practical looming compensation , 2008, 2008 19th International Conference on Pattern Recognition.

[5]  Richard A. Olshen,et al.  Gait Analysis and the Bootstrap , 1989 .

[6]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[7]  Steven H Collins,et al.  Dynamic arm swinging in human walking , 2009, Proceedings of the Royal Society B: Biological Sciences.

[8]  Kosuke Okusa,et al.  Gait parameter and speed estimation from the frontal view gait video data based on the gait motion and spatial modeling , 2013 .

[9]  P. Schneider,et al.  Video analysis software increases the interrater reliability of video gait assessments in children with cerebral palsy. , 2011, Gait & posture.

[10]  M P Kadaba,et al.  Measurement of lower extremity kinematics during level walking , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[11]  J. Gage Gait analysis for decision-making in cerebral palsy. , 1983, Bulletin of the Hospital for Joint Diseases Orthopaedic Institute.

[12]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[13]  Kosuke Okusa,et al.  Fast frontal view gait authentication based on the statistical registration and human gait modeling , 2013 .