Dendritic processing

Dendritic processing multiplies the computational power of a single neuron by enabling the processing of inputs in a spatio-temporally differentiated manner. Recently, the development of new and refined optical, electrophysiological and molecular-biological techniques has led to new insights into dendritic function and revealed an astonishing plethora of computational mechanisms.

[1]  P. Sterling,et al.  Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA , 2000, The Journal of Neuroscience.

[2]  R. Masland,et al.  Connections of indoleamine‐accumulating cells in the rabbit retina , 1989, The Journal of comparative neurology.

[3]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[4]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[5]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[6]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[7]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[8]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[9]  S J Remington,et al.  Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein. , 2000, Journal of molecular biology.

[10]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[11]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[12]  W Rall,et al.  Computational study of an excitable dendritic spine. , 1988, Journal of neurophysiology.

[13]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[14]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[15]  E M Callaway,et al.  Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Lyle J. Borg-Graham,et al.  The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell , 2001, Nature Neuroscience.

[17]  R. Masland,et al.  Action potentials in the dendrites of retinal ganglion cells. , 1999, Journal of neurophysiology.

[18]  S. Antic,et al.  Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. , 1999, Journal of neurophysiology.

[19]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[20]  P. Detwiler,et al.  Optical recording of light-evoked calcium signals in the functionally intact retina. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  B Sakmann,et al.  Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M Egelhaaf,et al.  In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Alexander Borst,et al.  Dendritic integration of motion information in visual interneurons of the blowfly , 1992, Neuroscience Letters.

[24]  S J Remington,et al.  Mechanism and Cellular Applications of a Green Fluorescent Protein-based Halide Sensor* , 2000, The Journal of Biological Chemistry.

[25]  S T Hess,et al.  Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Alexander Borst,et al.  Local current spread in electrically compact neurons of the fly , 2000, Neuroscience Letters.

[27]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[28]  George J Augustine,et al.  Chemical Two-Photon Uncaging: a Novel Approach to Mapping Glutamate Receptors , 1997, Neuron.

[29]  G. Augustine,et al.  Distribution of functional glutamate and GABA receptors on hippocampal pyramidal cells and interneurons. , 2000, Journal of neurophysiology.

[30]  Christof Koch,et al.  The role of single neurons in information processing , 2000, Nature Neuroscience.

[31]  S. Moss,et al.  Analysis of GABAA Receptor Assembly in Mammalian Cell Lines and Hippocampal Neurons Using γ2 Subunit Green Fluorescent Protein Chimeras , 2000, Molecular and Cellular Neuroscience.

[32]  W. Denk,et al.  Two types of calcium response limited to single spines in cerebellar Purkinje cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  V. Dürr,et al.  Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics. , 2001, Journal of neurobiology.

[34]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[35]  W. N. Ross,et al.  Synergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials , 1999, Neuron.

[36]  D. Tank,et al.  Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. , 1988, Science.

[37]  S. R. Y. Cajal La rétine des vertébrés , 1892 .

[38]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[39]  W. Denk,et al.  Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Hughes,et al.  The jellyfish green fluorescent protein: A new tool for studying ion channel expression and function , 1995, Neuron.

[41]  A. Borst,et al.  Dendritic integration and its role in computing image velocity. , 1998, Science.

[42]  G. Shepherd,et al.  Analysis of Relations between NMDA Receptors and GABA Release at Olfactory Bulb Reciprocal Synapses , 2000, Neuron.

[43]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[44]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[45]  H. Barlow,et al.  Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit , 1964, The Journal of physiology.

[46]  M Egelhaaf,et al.  Dendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo. , 2000, Journal of neurophysiology.

[47]  M. Kano,et al.  Local Calcium Release in Dendritic Spines Required for Long-Term Synaptic Depression , 2000, Neuron.

[48]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[49]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.

[50]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[51]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[52]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[53]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[54]  I Segev,et al.  Untangling dendrites with quantitative models. , 2000, Science.

[55]  Alexander Borst,et al.  Amplification of high-frequency synaptic inputs by active dendritic membrane processes , 1996, Nature.

[56]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[57]  K K Baldridge,et al.  The structure of the chromophore within DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[59]  M. Häusser,et al.  Differential shunting of EPSPs by action potentials. , 2001, Science.

[60]  George J. Augustine,et al.  A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons , 2000, Neuron.

[61]  Jeffry S. Isaacson,et al.  Mechanisms governing dendritic γ-aminobutyric acid (GABA) release in the rat olfactory bulb , 2001 .

[62]  E. V. Famiglietti,et al.  Synaptic organization of starburst amacrine cells in rabbit retina: Analysis of serial thin sections by electron microscopy and graphic reconstruction , 1991, The Journal of comparative neurology.

[63]  Gordon M. Shepherd,et al.  The Olfactory Bulb , 1988 .

[64]  O. Hoegh-Guldberg,et al.  Major colour patterns of reef-building corals are due to a family of GFP-like proteins , 2001, Coral Reefs.

[65]  W. Allan Jamieson,et al.  Recollections of My Life , 1900, Canadian Medical Association journal.

[66]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[67]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[68]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Rinzel,et al.  The role of dendrites in auditory coincidence detection , 1998, Nature.

[70]  W. N. Ross,et al.  Inositol 1 , 4 , 5-Trisphosphate ( IP 3 )-Mediated Ca 2 1 Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA 1 Pyramidal Neurons , 2000 .

[71]  M Migliore,et al.  Dendritic potassium channels in hippocampal pyramidal neurons , 2000, The Journal of physiology.