Future prospects on testing extensions to ΛCDM through the weak lensing of gravitational waves

With planned space-based and 3rd generation ground-based gravitational wave detectors (LISA, Einstein Telescope, Cosmic Explorer), and proposed DeciHz detectors (DECIGO, Big Bang Observer), it is timely to explore statistical cosmological tests that can be employed with the forthcoming plethora of data, $10^4-10^6$ mergers a year. We forecast the combination of the standard siren measurement with the weak lensing of gravitational waves from binary mergers. For 10 years of 3rd generation detector runtime, this joint analysis will constrain the dark energy equation of state with marginalised $1\sigma$ uncertainties of $\sigma(w_0)$~0.005 and $\sigma(w_a)$~0.04. This is comparable to or better than forecasts for future galaxy/intensity mapping surveys, and better constraints are possible when combining these and other future probes with gravitational waves. We find that combining mergers with and without an electromagnetic counterpart helps break parameter degeneracies. Using DeciHz detectors in the post-LISA era, we demonstrate for the first time how merging binaries could achieve a precision on the sum of neutrino masses of $\sigma(\Sigma m_{\nu})$~0.05 eV using $3\times10^6$ sources up to $z=3.5$ with a distance uncertainty of $1\%$, and ~percent or sub-percent precision also on curvature, dark energy, and other parameters, independently from other probes. Finally, we demonstrate how the cosmology dependence in the redshift distribution of mergers can be exploited to improve dark energy constraints if the cosmic merger rate is known, instead of relying on measured distributions as is standard in cosmology. In the coming decades gravitational waves will become a formidable probe of both geometry and large scale structure.

[1]  S. Kawamura Space gravitational wave antenna DECIGO and B-DECIGO , 2023, The Sixteenth Marcel Grossmann Meeting.

[2]  Hang Yu,et al.  Multiband Gravitational Wave Cosmography with Dark Sirens , 2022, 2208.01668.

[3]  M. Maggiore,et al.  Forecasting the Detection Capabilities of Third-generation Gravitational-wave Detectors Using GWFAST , 2022, The Astrophysical Journal.

[4]  R. Maartens,et al.  Cosmological constraints from the power spectrum and bispectrum of 21cm intensity maps , 2022, Journal of Cosmology and Astroparticle Physics.

[5]  L. Amendola,et al.  The lure of sirens: Joint distance and velocity measurements with third generation detectors , 2022, Monthly Notices of the Royal Astronomical Society.

[6]  M. Mapelli,et al.  Modelling the host galaxies of binary compact object mergers with observational scaling relations , 2022, Monthly Notices of the Royal Astronomical Society.

[7]  M. Martinelli,et al.  Dancing in the dark: detecting a population of distant primordial black holes , 2022, Journal of Cosmology and Astroparticle Physics.

[8]  Ruiguang Zhu,et al.  Impacts of gravitational-wave standard siren observations from Einstein Telescope and Cosmic Explorer on weighing neutrinos in interacting dark energy models , 2022, Communications in Theoretical Physics.

[9]  M. Branchesi,et al.  Perspectives for multi-messenger astronomy with the next generation of gravitational-wave detectors and high-energy satellites , 2022, Astronomy & Astrophysics.

[10]  K. Duncan All-purpose, all-sky photometric redshifts for the Legacy Imaging Surveys Data Release 8 , 2022, 2203.01949.

[11]  D. Holz,et al.  Spectral Sirens: Cosmology from the Full Mass Distribution of Compact Binaries. , 2022, Physical review letters.

[12]  David O. Jones,et al.  The Pantheon+ Analysis: Cosmological Constraints , 2022, The Astrophysical Journal.

[13]  G. Nelemans,et al.  The Gravitational Wave Universe Toolbox. II. Constraining the binary black hole population with second and third generation detectors , 2022, Astronomy & Astrophysics.

[14]  T. Bulik,et al.  Exploring compact binary populations with the Einstein Telescope , 2021, Astronomy & Astrophysics.

[15]  J. Zuntz,et al.  Transitioning from Stage-III to Stage-IV: Cosmology from galaxy×CMB lensing and shear×CMB lensing , 2021, Monthly Notices of the Royal Astronomical Society.

[16]  Kendrick M. Smith,et al.  Hydrogen Intensity and Real-Time Analysis Experiment: 256-element array status and overview , 2021, Journal of Astronomical Telescopes, Instruments, and Systems.

[17]  R. Sturani,et al.  Measuring the Hubble constant with black sirens , 2021, Physical Review D.

[18]  I. Mandel,et al.  Rates of compact object coalescences , 2021, Living Reviews in Relativity.

[19]  M. Viel,et al.  Gravitational waves × HI intensity mapping: cosmological and astrophysical applications , 2021, Journal of Cosmology and Astroparticle Physics.

[20]  D. Holz,et al.  Please Repeat: Strong Lensing of Gravitational Waves as a Probe of Compact Binary and Galaxy Populations , 2021, The Astrophysical Journal.

[21]  G. Nelemans,et al.  The GW-Universe Toolbox II: Constraining the binary black hole population with second and third generation detectors , 2022 .

[22]  B. Sathyaprakash,et al.  Listening to the Universe with Next Generation Ground-Based Gravitational-Wave Detectors , 2022, 2202.11048.

[23]  G. Fragione Black-hole–Neutron-star Mergers Are Unlikely Multimessenger Sources , 2021, The Astrophysical Journal Letters.

[24]  M. J. Williams,et al.  GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run , 2021, Physical Review D.

[25]  A. Hall Cosmology from weak lensing alone and implications for the Hubble tension , 2021, Monthly Notices of the Royal Astronomical Society.

[26]  He Gao,et al.  Multimessenger Detection Rates and Distributions of Binary Neutron Star Mergers and Their Cosmological Implications , 2021, The Astrophysical Journal.

[27]  J. Gair,et al.  On the importance of source population models for gravitational-wave cosmology , 2021, Physical Review D.

[28]  M. Fishbach,et al.  Cosmology with standard sirens at cosmic noon , 2021, Physical Review D.

[29]  J. Gair,et al.  Gravitational wave cosmology with extreme mass-ratio inspirals , 2021, Monthly Notices of the Royal Astronomical Society.

[30]  Bin Hu,et al.  Lensing magnification: gravitational waves from coalescing stellar-mass binary black holes , 2020, Monthly Notices of the Royal Astronomical Society.

[31]  I. Lapshov,et al.  The eROSITA X-ray telescope on SRG , 2020, Astronomy & Astrophysics.

[32]  C. Heymans,et al.  hmcode-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback , 2020, Monthly Notices of the Royal Astronomical Society.

[33]  K. Jani,et al.  Gravitational-wave Lunar Observatory for Cosmology , 2020, Journal of Cosmology and Astroparticle Physics.

[34]  Xiao Fang,et al.  Cosmology with the Roman Space Telescope – multiprobe strategies , 2020, Monthly Notices of the Royal Astronomical Society.

[35]  T. Futamase,et al.  Standard Candles and Sirens Rescue H0 , 2020, The Astrophysical Journal.

[36]  Zheng Zheng,et al.  Constraining delay time distribution of binary neutron star mergers from host galaxy properties , 2020, 2007.15024.

[37]  A. Connolly,et al.  Photometric Redshifts with the LSST. II. The Impact of Near-infrared and Near-ultraviolet Photometry , 2020, The Astronomical Journal.

[38]  E. Thrane,et al.  Standard-siren Cosmology Using Gravitational Waves from Binary Black Holes , 2020, 2004.00036.

[39]  T. Regimbau,et al.  Cross-correlating galaxy catalogs and gravitational waves: A tomographic approach , 2020, 2002.02466.

[40]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[41]  I. Mandel,et al.  Detecting double neutron stars with LISA , 2019, Monthly Notices of the Royal Astronomical Society.

[42]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[43]  G. Mueller,et al.  The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range , 2019, Classical and Quantum Gravity.

[44]  B. Wandelt,et al.  Probing the theory of gravity with gravitational lensing of gravitational waves and galaxy surveys , 2019, Monthly Notices of the Royal Astronomical Society.

[45]  S. Hannestad,et al.  Updated results on neutrino mass and mass hierarchy from cosmology with Planck 2018 likelihoods , 2019, Journal of Cosmology and Astroparticle Physics.

[46]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[47]  M. Fishbach,et al.  A Future Percent-level Measurement of the Hubble Expansion at Redshift 0.8 with Advanced LIGO , 2019, The Astrophysical Journal.

[48]  Stefan Hilbert,et al.  H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.

[49]  T. Regimbau,et al.  Cosmology and dark energy from joint gravitational wave-GRB observations , 2019, Journal of Cosmology and Astroparticle Physics.

[50]  R. Nichol,et al.  Euclid preparation , 2019, Astronomy & Astrophysics.

[51]  B. A. Boom,et al.  Edinburgh Research Explorer First measurement of the Hubble constant from a dark standard siren using the Dark Energy Survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814 , 2018 .

[52]  G. Congedo,et al.  Joint cosmological inference of standard sirens and gravitational wave weak lensing , 2018, Physical Review D.

[53]  Scott Dodelson,et al.  Modelling baryonic physics in future weak lensing surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[54]  W. Farr,et al.  Measuring the Star Formation Rate with Gravitational Waves from Binary Black Holes , 2018, The Astrophysical Journal.

[55]  David Alonso,et al.  The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document , 2018, 1809.01669.

[56]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[57]  B. Wandelt,et al.  Beyond the classical distance-redshift test: cross-correlating redshift-free standard candles and sirens with redshift surveys , 2018, 1808.06615.

[58]  E. Stanway,et al.  A consistent estimate for gravitational wave and electromagnetic transient rates , 2018, Monthly notices of the Royal Astronomical Society.

[59]  David Alonso,et al.  Neutrino masses and beyond- ΛCDM cosmology with LSST and future CMB experiments , 2018, Physical Review D.

[60]  Jingfei Zhang,et al.  Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology , 2018, Physics Letters B.

[61]  M. Fishbach,et al.  A two per cent Hubble constant measurement from standard sirens within five years , 2017, Nature.

[62]  Wen Zhao,et al.  Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology , 2017, 1710.05325.

[63]  Rachel Mandelbaum,et al.  Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.

[64]  W. D. Pozzo,et al.  Stellar binary black holes in the LISA band: a new class of standard sirens , 2017, 1703.01300.

[65]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[66]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[67]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[68]  K. Liao,et al.  Precision cosmology from future lensed gravitational wave and electromagnetic signals , 2017, Nature Communications.

[69]  M. Evans,et al.  Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors , 2016, 1610.06917.

[70]  Roberto Scaramella,et al.  The Euclid mission design , 2016, Astronomical Telescopes + Instrumentation.

[71]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[72]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[73]  J. Gair,et al.  Science with the space-based interferometer eLISA: Supermassive black hole binaries , 2015, 1511.05581.

[74]  B. S. Sathyaprakash,et al.  Source Redshifts from Gravitational-Wave Observations of Binary Neutron Star Mergers , 2013, 1312.1862.

[75]  X. Siemens,et al.  Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays , 2013, Living reviews in relativity.

[76]  S. Camera,et al.  Beyond concordance cosmology with magnification of gravitational-wave standard sirens. , 2013, Physical review letters.

[77]  Stephen R. Taylor,et al.  Cosmology with the lights off: Standard sirens in the Einstein Telescope era , 2012, 1204.6739.

[78]  Jean-Luc Starck,et al.  Weak Gravitational Lensing , 2012 .

[79]  W. D. Pozzo Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers , 2011, 1108.1317.

[80]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[81]  W. Marsden I and J , 2012 .

[82]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[83]  C. Van Den Broeck,et al.  Determination of Dark Energy by the Einstein Telescope: Comparing with CMB, BAO and SNIa Observations , 2010, 1009.0206.

[84]  D. Holz,et al.  Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution , 2010, 1004.3988.

[85]  Thomas Kitching,et al.  Can we measure the neutrino mass hierarchy in the sky , 2010, 1003.5918.

[86]  D. Bacon,et al.  Delensing gravitational wave standard sirens with shear and flexion maps , 2009, 0907.3635.

[87]  B. S. Sathyaprakash,et al.  Cosmography with the Einstein Telescope , 2009, 0906.4151.

[88]  D. Holz,et al.  Ultrahigh precision cosmology from gravitational waves , 2009, 0906.3752.

[89]  M. Cortês,et al.  Non-parametric Dark Energy Degeneracies , 2008, 0801.3847.

[90]  Chelsea L. MacLeod,et al.  Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information , 2007, 0712.0618.

[91]  E. Phinney,et al.  Laser interferometry for the Big Bang Observer , 2006 .

[92]  R. Takahashi Amplitude and Phase Fluctuations for Gravitational Waves Propagating through Inhomogeneous Mass Distribution in the Universe , 2005, astro-ph/0511517.

[93]  N. Cornish,et al.  Beyond LISA: Exploring future gravitational wave missions , 2005, gr-qc/0506015.

[94]  R. Takahashi,et al.  Scattering of gravitational waves by the weak gravitational fields of lens objects , 2005, astro-ph/0503343.

[95]  B. Jain,et al.  Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.

[96]  P. Schneider Gravitational lensing as a probe of structure , 2003, astro-ph/0306465.

[97]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[98]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[99]  P. Peebles Origin of the large-scale galaxy peculiar velocity field: a minimal isocurvature model , 1987, Nature.

[100]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[101]  W. Press,et al.  Gravitational waves. , 1980, Science.