Projection from an atomistic chain contour to its primitive path

Abstract In this note, we propose a mapping from the spatial coordinates of an atomistic polymer chain to its ‘primitive path’ (PP), a concept being frequently used in the framework of reptation models. For the model to be presented, the projection preserves as much structure of the atomistic chain as appropriate to replace an atomistic chain on a prescribed (parameterized) coarse-grained level. We present an efficient numerical method to extract a PP as well as an analytic approach to study the conformational properties of the coarse-grained chain in an approximate fashion. The knowledge of the PP is a prerequisite to facilitate tests of mesoscopic descriptions of polymeric fluids, in particular in the framework of nonequilibrium thermodynamics, and allows for a thorough analysis of atomistic chain configurations on a ‘relevant’ coarse-grained level.

[1]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[2]  Doros N. Theodorou,et al.  Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts , 1995 .

[3]  F. Greco,et al.  Rheology of polymer melts and concentrated solutions , 1999 .

[4]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[5]  D. Thouless,et al.  A Statistical Theory of Entangled Lattice Polymers , 1991 .

[6]  S. Hess,et al.  Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics , 2000, Physical review letters.

[7]  G. Ianniruberto,et al.  Open problems in tube models for concentrated polymers , 1999 .

[8]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 4.—Rheological properties , 1979 .

[9]  W. Mattice,et al.  A “phantom bubble” model for the distribution of free volume in polymers , 1999 .

[10]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[11]  G. Porod Zusammenhang zwischen mittlerem Endpunktsabstand und Kettenlänge bei Fadenmolekülen , 1949 .

[12]  H. C. Öttinger Thermodynamically admissible reptation models with anisotropic tube cross sections and convective constraint release , 2000 .

[13]  D. S. Pearson,et al.  Statistics of the entanglement of polymers: Unentangled loops and primitive paths , 1983 .

[14]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state , 1978 .

[15]  D. Theodorou,et al.  Atomistic Simulation of Polymer Melt Elasticity: Calculation of the Free Energy of an Oriented Polymer Melt , 1998 .

[16]  Martin Kröger,et al.  On a quantity describing the degree of chain entanglement in linear polymer systems , 1994 .

[17]  T. Vilgis,et al.  Some geometrical and Topological Problems in Polymer Physics , 1998 .

[18]  G. Marrucci,et al.  Stress tensor and stress-optical law in entangled polymers 1 Dedicated to Professor Marcel J. Croche , 1998 .

[19]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[20]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[21]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .