Blocking total dominating sets via edge contractions

In this paper, we study the problem of deciding whether the total domination number of a given graph $G$ can be reduced using exactly one edge contraction (called 1-Edge Contraction($\gamma_t$)). We focus on several graph classes and determine the computational complexity of this problem. By putting together these results, we manage to obtain a complete dichotomy for $H$-free graphs.

[1]  Stephan Olariu,et al.  Efficient algorithms for graphs with few P4's , 2001, Discret. Math..

[2]  Dominique de Werra,et al.  Minimum d-blockers and d-transversals in graphs , 2011, J. Comb. Optim..

[3]  Daniel Vanderpooten,et al.  Critical edges for the assignment problem: Complexity and exact resolution , 2013, Oper. Res. Lett..

[4]  Zsolt Tuza,et al.  The most vital nodes with respect to independent set and vertex cover , 2011, Discret. Appl. Math..

[5]  Jun-Ming Xu,et al.  Domination and Total Domination Contraction Numbers of Graphs , 2010, Ars Comb..

[6]  Cristopher Moore,et al.  Hard Tiling Problems with Simple Tiles , 2001, Discret. Comput. Geom..

[7]  Daniël Paulusma,et al.  Reducing the Clique and Chromatic Number via Edge Contractions and Vertex Deletions , 2016, ISCO.

[8]  Frank Harary,et al.  Graph Theory , 2016 .

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Daniël Paulusma,et al.  Contraction Blockers for Graphs with Forbidden Induced Paths , 2015, CIAC.

[11]  Bernard Ries,et al.  Semitotal Domination: New hardness results and a polynomial-time algorithm for graphs of bounded mim-width , 2018, Theor. Comput. Sci..

[12]  D. de Werra,et al.  Weighted Transversals and Blockers for Some Optimization Problems in Graphs , 2011 .

[13]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[14]  Eduardo L. Pasiliao,et al.  Minimum vertex blocker clique problem , 2014, Networks.

[15]  Daniël Paulusma,et al.  Critical Vertices and Edges in $H$-free Graphs , 2017, Discret. Appl. Math..

[16]  Daniël Paulusma,et al.  Contraction and Deletion Blockers for Perfect Graphs and $H$-free Graphs , 2017, Theor. Comput. Sci..

[17]  D. de Werra,et al.  Blockers and transversals in some subclasses of bipartite graphs: When caterpillars are dancing on a grid , 2010, Discret. Math..

[18]  Daniël Paulusma,et al.  Blocking Independent Sets for H-Free Graphs via Edge Contractions and Vertex Deletions , 2017, TAMC.

[19]  Bernard Ries,et al.  Reducing the domination number of graphs via edge contractions and vertex deletions , 2021, Discret. Math..