A new misfit function for multimodal inversion of surface waves

Higher-modecontributionisimportantinsurface-waveinversion because it allows more information to be exploited, increases investigation depth, and improves model resolution. A new misfit function for multimodal inversion of surface waves, based on the Haskell-Thomson matrix method, allows higher modes to be taken into account without the needtoassociateexperimentaldatapointstoaspecificmode, thus avoiding mode-misidentification errors in the retrieved velocity profiles. Computing cost is reduced by avoiding the need for calculating synthetic apparent or modal dispersion curves.Basedonseveralsyntheticandrealexampleswithinversion results from the classical and the proposed methods, wefind that correct velocity models can be retrieved through the multimodal inversion when higher modes are superimposedintheapparentdispersion-curveorwhenitisnottrivial todetermineaprioritowhichmodeeachdatapointoftheexperimental dispersion curve belongs. The main drawback of the method is related to the presence of several local minima inthemisfitfunction.Thisfeaturemakesthechoiceofaconsistentinitialmodelveryimportant.

[1]  L. Socco,et al.  A New Approach for Multimodal Inversion of Rayleigh and Scholte Waves , 2008 .

[2]  S. Foti,et al.  Geological and Geotechnical investigations for the seismic response analysis at Castelnuovo Garfagnana in Central Italy , 2001 .

[3]  B. Kennett,et al.  Seismic waves in a stratified half space. , 1979 .

[4]  Thomas Forbriger,et al.  Inversion of shallow-seismic wavefields: I. Wavefield transformation , 2003 .

[5]  Bi-xing Zhang,et al.  Inversion of Rayleigh waves using a genetic algorithm in the presence of a low-velocity layer , 2006 .

[6]  Laura Socco,et al.  Surface-wave method for near-surface characterization: a tutorial , 2004 .

[7]  W. Thomson,et al.  Transmission of Elastic Waves through a Stratified Solid Medium , 1950 .

[8]  Roel Snieder,et al.  IN SITU MEASUREMENTS OF SHEAR‐WAVE VELOCITY IN SEDIMENTS WITH HIGHER‐MODE RAYLEIGH WAVES* , 1987 .

[9]  J. Mari,et al.  Estimation of static corrections for shear-wave profiling using the dispersion properties of Love waves , 1984 .

[10]  Nenad Gucunski,et al.  Numerical simulation of the SASW test , 1992 .

[11]  G. McMechan,et al.  Analysis of dispersive waves by wave field transformation , 1981 .

[12]  Kohji Tokimatsu,et al.  Effects of Multiple Modes on Rayleigh Wave Dispersion Characteristics , 1992 .

[13]  J. W. Dunkin,et al.  Computation of modal solutions in layered, elastic media at high frequencies , 1965 .

[14]  Thomas Forbriger,et al.  Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms , 2003 .

[15]  Nils Ryden,et al.  Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra , 2006 .

[16]  Jianghai Xia,et al.  Imaging dispersion curves of surface waves on multi-channel record , 1998 .

[17]  E. Kausel,et al.  Stiffness matrices for layered soils , 1981 .

[18]  Robert B. Herrmann,et al.  A numerical study of P-, SV-, and SH-wave generation in a plane layered medium , 1980 .

[19]  B. Kennett,et al.  Reflections, rays, and reverberations , 1974, Bulletin of the Seismological Society of America.

[20]  Spatial Sampling Issues In Fk Analysis Of Surface Waves , 2002 .

[21]  N. A. Haskell Radiation pattern of surface waves from point sources in a multi-layered medium , 1964 .

[22]  Xianhai Song,et al.  Utilization of multimode surface wave dispersion for characterizing roadbed structure , 2007 .

[23]  Sebastiano Foti,et al.  Multistation Methods for Geotechnical Characterization using Surface Waves , 2000 .

[24]  G. Panza,et al.  Array analysis of seismic surface waves: Limits and possibilities , 1976 .

[25]  Jianghai Xia,et al.  Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source , 2006 .

[26]  Choon B. Park,et al.  Multimodal Analysis Of High Frequency Surface Waves , 1999 .

[27]  L. Chan,et al.  Effects of Possible Effects of Misidentified Mode Number on Rayleigh Wave Inversion , 2003 .

[28]  Soheil Nazarian,et al.  AUTOMATED INVERSION PROCEDURE FOR SPECTRAL ANALYSIS OF SURFACE WAVES , 1998 .

[29]  Ronen Ben-Hador,et al.  Free-mode surface-wave computations , 1996 .

[30]  N. A. Haskell The Dispersion of Surface Waves on Multilayered Media , 1953 .

[31]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[32]  Yinhe Luo,et al.  Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform , 2008 .

[33]  Jianghai Xia,et al.  Inversion of high frequency surface waves with fundamental and higher modes , 2003 .

[34]  Freeman Gilbert,et al.  Propagator matrices in elastic wave and vibration problems , 1966 .

[35]  F. Ernst Long-Wavelength Statics Estimation from Guided Waves , 2007 .