Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method

SummaryIn this paper we develop a class of numerical methods to approximate the solutions of delay differential equations. They are essentially based on a modified version, in a predictor-corrector mode, of the one-step collocation method atn Gaussian points. These methods, applied to ODE's, provide a continuous approximate solution which is accurate of order 2n at the nodes and of ordern+1 uniformly in the whole interval. In order to extend the methods to delay differential equations, the uniform accuracy is raised to the order 2n by some a posteriori corrections. Numerical tests and comparisons with other methods are made on real-life problems.