High-resolution global upper mantle structure and plate tectonics

A global high-resolution S wave velocity model RG5.5 is obtained for the upper 500 km of Earth's mantle using a 5° × 5° equal-area block parameterization. The data set consists of some 18,000 seismograms associated with 971 events with magnitudes larger than 5.5. Fundamental modes (Love and Rayleigh waves) are used with periods from 75 to 250 s. The horizontal resolution length is around 1000 km, and the vertical resolution varies with depth from 60 to 250 km. Model RG5.5 has many features consistent with previous three-dimensional global and local seismic studies, but many new features are found. The S waves under mid-ocean ridges have broad slow velocity and have very slow velocity in the upper 100 km below the surface. The minimum velocity is at depths near 50 km or shallower. The lateral extent of the slow velocity region across ridges increases with spreading rate. The S wave velocities under ridges are strongly correlated with spreading rates at shallow depth, but the correlation decreases with depth and almost disappears at 100 km. The slow velocities shift off the current spreading positions below 100 km depth under the Mid-Atlantic Ridge and may record past positions of the ridge and/or be related to hotspots near the ridge. Some major hotspots are associated with slow-velocity anomalies with magnitudes of about 1–2% slower than the global average and with lateral dimension larger than 1000 km at depths between 100 and 200 km. Differences in the upwelling structure between ridges and hotspots are indicated. The S wave velocity structures may suggest an active mechanism for the East African Rift Valley and a plate extension mechanism for the Baikal Rift Valley.

[1]  J. Brozena,et al.  Ridge jumps and propagations in the South Atlantic Ocean , 1990, Nature.

[2]  D. L. Anderson,et al.  Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: 1. Analysis of Great Circle Phase Velocities , 1983 .

[3]  S. Solomon,et al.  Joint inversion of shear wave travel time residuals and geoid and depth anomalies for long‐wavelength variations in upper mantle temperature and composition along the Mid‐Atlantic Ridge , 1991 .

[4]  L. Zonenshain,et al.  Geodynamics of the Baikal rift zone and plate tectonics of Asia , 1981 .

[5]  P. Vogt On the applicability of thermal conduction models to mid‐plate volcanism: Comments on a paper by Gass et al. , 1981 .

[6]  K. Macdonald The crest of the Mid-Atlantic Ridge: Models for crustal generation processes and tectonics , 1986 .

[7]  J. Weissel,et al.  Asymmetric Seafloor Spreading south of Australia , 1971, Nature.

[8]  Robert W. Clayton,et al.  Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid , 1989 .

[9]  N. A. Logatchev,et al.  Baikal rift: Active or passive? — comparison of the Baikal and Kenya rift zones , 1983 .

[10]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[11]  Donald W. Forsyth The Early Structural Evolution and Anisotropy of the Oceanic Upper Mantle , 1975 .

[12]  D. Forsyth,et al.  Anomalous upper mantle beneath the Australian-Antarctic discordance , 1987 .

[13]  T. Jordan,et al.  Aspherical structure of the core‐mantle boundary from PKP travel times , 1986 .

[14]  Don L. Anderson,et al.  Mineralogy and composition of the upper mantle , 1984 .

[15]  J. Morgan Melt migration beneath mid‐ocean spreading centers , 1987 .

[16]  Barbara Romanowicz,et al.  GEOSCOPE: A French initiative in long‐period three‐component global seismic networks , 1984 .

[17]  John H. Woodhouse,et al.  CENTROID-MOMENT TENSOR SOLUTIONS FOR 201 MODERATE AND LARGE EARTHQUAKES OF 1981 , 1983 .

[18]  D. Giardini,et al.  Splitting Functions of Long-Period Normal Modes of the Earth , 1988 .

[19]  R. W. Griffiths,et al.  Implications of mantle plume structure for the evolution of flood basalts , 1990 .

[20]  D. Jurdy,et al.  Subducted lithosphere, hotspots, and the geoid , 1980 .

[21]  Roger N. Anderson,et al.  The interrelation between variations in magnetic anomaly amplitudes and basalt magnetization and chemistry along the Southeast Indian Ridge , 1980 .

[22]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[23]  J. Weissel,et al.  The Australian‐Antarctic Discordance: New results and implications , 1974 .

[24]  T. Tanimoto,et al.  Global anisotropy in the upper mantle inferred from the regionalization of phase velocities , 1990 .

[25]  T. Tanimoto The 3-D shear wave structure in the mantle by overtone waveform inversion-II. Inversion of X-waves, R-waves and G-waves , 1988 .

[26]  Thomas H. Jordan,et al.  Global tectonic regionalization for seismological data analysis , 1981 .

[27]  M. Diament,et al.  Longwavelength gravity anomalies and the deep thermal structure of the baikal rift , 1990 .

[28]  Bradford H. Hager,et al.  A simple global model of plate dynamics and mantle convection , 1981 .

[29]  O. Anderson,et al.  The relationship between shear and compressional velocities at high pressures: Reconciliation of seismic tomography and mineral physics , 1992 .

[30]  B. Hager,et al.  — a H 03 Dynamically Supported Geoid Highs over Hotspots : Observation and Theory , 2008 .

[31]  D. Forsyth,et al.  The anisotropic structure of the upper mantle in the Pacific , 1989 .

[32]  Han-shou Liu,et al.  Convection generated stress field and intra-plate volcanism , 1980 .

[33]  D. Stevenson,et al.  A self‐consistent model of melting, magma migration and buoyancy‐driven circulation beneath mid‐ocean ridges , 1989 .

[34]  Arthur L. Lerner-Lam,et al.  How Thick Are the Continents , 1987 .

[35]  Thomas H. Jordan,et al.  Aspherical Earth structure from fundamental spheroidal-mode data , 1982, Nature.

[36]  G. Houseman The thermal structure of mantle plumes: axisymmetric or triple-junction? , 1990 .

[37]  S. Humphris,et al.  Hotspot—migrating ridge interaction in the South Atlantic , 1985, Nature.

[38]  C. G. Chase Asthenospheric counterflow: a kinematic model , 1979 .

[39]  R. White,et al.  Magmatism at rift zones: The generation of volcanic continental margins and flood basalts , 1989 .

[40]  B. Hanan,et al.  Nd‐Sr‐Pb isotopic variations along the Gulf of Aden: Evidence for Afar Mantle Plume‐Continental Lithosphere Interaction , 1992 .

[41]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[42]  J. Wilson Mantle plumes and plate motions , 1973 .

[43]  D. L. Anderson,et al.  Worldwide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion , 1982 .

[44]  P. J. Fox,et al.  East Pacific Rise from Siqueiros to Orozco Fracture Zones: Along‐strike continuity of axial neovolcanic zone and structure and evolution of overlapping spreading centers , 1984 .

[45]  E. C. Pavlis,et al.  A new gravitational model for the earth from satellite tracking data - GEM-T1 , 1988 .

[46]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy: 3. Inversion , 1986 .

[47]  D. L. Anderson,et al.  Plate Tectonics and Hotspots: The Third Dimension , 1992, Science.

[48]  M. Richards,et al.  Hotspots, mantle plumes, flood basalts, and true polar wander , 1991 .

[49]  John H. Woodhouse,et al.  Determination of earthquake source parameters from waveform data for studies of global and regional seismicity , 1981 .

[50]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy. II - Analysis by the single-station method , 1984 .

[51]  S. Hart,et al.  Evidence for the Azores mantle plume from strontium isotope geochemistry of the Central North Atlantic , 1976, Nature.

[52]  T. Tanimoto Free oscillations of a slightly anisotropic earth , 1986 .

[53]  G. E. Vink The Earth's Hot Spots. , 1985 .

[54]  P. Molnar,et al.  Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. , 1975, Science.

[55]  B. Hager,et al.  The earth's geoid and the large-scale structure of mantle convection , 1988 .

[56]  F. Gilbert,et al.  An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[57]  E. Okal,et al.  Two-station measurements of Rayleigh wave group velocity along the Hawai'ian Swell , 1991 .

[58]  T. Jordan,et al.  Multiple ScS travel times in the western Pacific: Implications for mantle heterogeneity , 1980 .

[59]  D. Turcotte,et al.  On isostatic geoid anomalies , 1978 .

[60]  D. L. Anderson,et al.  Importance of Physical Dispersion in Surface Wave and Free Oscillation Problems: Review (Paper 6R0680) , 1977 .

[61]  S. Grand Tomographic Inversion for Shear Velocity Beneath the North American Plate , 1987 .

[62]  Lateral heterogeneity of the upper mantle determined from the travel times of multiple ScS , 1975 .

[63]  Wei-jia Su,et al.  Predominance of long-wavelength heterogeneity in the mantle , 1991, Nature.

[64]  Adam M. Dziewonski,et al.  Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6 , 1984 .

[65]  L. Knopoff,et al.  Variations of Upper Mantle Structure under the Pacific Ocean , 1974, Science.

[66]  K. Macdonald Mid-Ocean Ridges: Fine Scale Tectonic, Volcanic and Hydrothermal Processes Within the Plate Boundary Zone , 1982 .

[67]  T. Tanimoto The Backus–Gilbert approach to the 3-D structure in the upper mantle – II. SH and SV velocity , 1986 .

[68]  C. R. Hutt,et al.  Test and Calibration of the Digital World-Wide Standardized Seismograph , 1982 .

[69]  T. Tanimoto,et al.  Global Love wave phase velocity variation and its significance to plate tectonics , 1991 .

[70]  Yu-shen Zhang Three-dimensional modeling of upper mantle structure and its significance to tectonics , 1992 .

[71]  T. Tanimoto The Backus—Gilbert approach to the three-dimensional structure in the upper mantle — I. Lateral variation of surface wave phase velocity with its error and resolution , 1985 .

[72]  Yosihiko Ogata,et al.  Whole mantle P-wave travel time tomography , 1990 .

[73]  Andrea Morelli,et al.  Topography of the core–mantle boundary and lateral homogeneity of the liquid core , 1987, Nature.

[74]  T. Tanimoto,et al.  Three-dimensional modelling of upper mantle structure under the Pacific Ocean and surrounding area , 1989 .

[75]  D. Sandwell,et al.  An abrupt change in ridge axis gravity with spreading rate , 1989 .

[76]  W. J. Morgan,et al.  Plate Motions and Deep Mantle Convection , 1972 .

[77]  T. Tanimoto Long-wavelength S-wave velocity structure throughout the mantle , 1990 .

[78]  Keiiti Aki,et al.  Determination of the three‐dimensional seismic structure of the lithosphere , 1977 .

[79]  D. L. Anderson,et al.  Phase velocities of long‐period surface waves and structure of the upper mantle: 1. Great‐Circle Love and Rayleigh wave data , 1966 .

[80]  W. Peltier,et al.  Mantle convection and core-mantle boundary topography: explanations and implications , 1991 .

[81]  Enrico Bonath Not So Hot "Hot Spots" in the Oceanic Mantle , 1990, Science.

[82]  D. Helmberger,et al.  Upper mantle shear structure of North America , 1984 .

[83]  D. Suetsugu,et al.  Tomographic inversion and resolution for Rayleigh wave phase velocities in the Pacific ocean. , 1985 .

[84]  C. Bowin The Earth's gravity field and plate tectonics , 1991 .

[85]  S. Solomon,et al.  THE STRUCTURE OF MID-OCEAN RIDGES , 1992 .

[86]  D. Anderson,et al.  Search for deep slabs in the Northwest Pacific mantle. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Robert S. White,et al.  Anomalous heat flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle , 1986 .

[88]  Jean-Paul Montagner,et al.  Global upper mantle tomography of seismic velocities and anisotropies , 1991 .

[89]  Robert W. Clayton,et al.  Lower mantle heterogeneity, dynamic topography and the geoid , 1985, Nature.

[90]  R. Duncan,et al.  Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Implications for African and South American Plate motions over plumes , 1990 .

[91]  Don L. Anderson,et al.  Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s , 1985 .

[92]  Donald H. Eckhardt,et al.  Correlations between global features of terrestrial fields , 1984 .

[93]  G. Houseman The deep structure of ocean ridges in a convecting mantle , 1983 .

[94]  C. Langmuir,et al.  Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance , 1988, Nature.

[95]  N. Sleep Formation of oceanic crust: Some thermal constraints , 1975 .

[96]  Don L. Anderson,et al.  Anisotropy and shear-velocity heterogeneities in the upper mantle , 1984 .

[97]  T. Lay,et al.  Studies of the Earth's Deep Interior: Goals and Trends , 1990 .

[98]  D. L. Anderson,et al.  Surface waves on a spherical Earth: 1. Upper mantle structure from Love waves , 1963 .

[99]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[100]  B. Mitchell,et al.  Regionalized shear velocity models of the Pacific upper mantle from observed Love and Rayleigh wave dispersion , 1979 .

[101]  G. Masters,et al.  Constraining aspherical structure with low-degree interaction coefficients: Application to uncoupled multiplets , 1988 .

[102]  M. McNutt,et al.  The Geoid: effect of compensated topography and uncompensated oceanic trenches , 1982 .

[103]  T. Jordan The continental tectosphere , 1975 .

[104]  Naohiro Soga,et al.  Some elastic constant data on minerals relevant to geophysics , 1968 .

[105]  Ó. Gudmundsson Some problems in global tomography: modeling the core-mantle boundary and statistical analysis of travel-time data , 1990 .

[106]  G. Balian,et al.  Composition of Membranous Tissues obtained from Tendon and Skin , 1967, Nature.

[107]  Ken C. Macdonald,et al.  Crustal processes at spreading centers , 1983 .