A practical mode system for recursive definitions
暂无分享,去创建一个
[1] Robin Milner,et al. Definition of standard ML , 1990 .
[2] Robert Hieb,et al. The Revised Report on the Syntactic Theories of Sequential Control and State , 1992, Theor. Comput. Sci..
[3] John Launchbury,et al. A natural semantics for lazy evaluation , 1993, POPL '93.
[4] Matthias Felleisen,et al. A call-by-need lambda calculus , 1995, POPL '95.
[5] Gérard Boudol. The Recursive Record Semantics of Objects Revisited , 2001, ESOP.
[6] Samir Genaim,et al. Inferring termination conditions for logic programs using backwards analysis , 2001, Theory and Practice of Logic Programming.
[7] Pascal Zimmer,et al. Recursion in the call-by-value lambda-calculus , 2002, FICS.
[8] Tom Hirschowitz,et al. Compilation of extended recursion in call-by-value functional languages , 2003, PPDP '03.
[9] Derek Dreyer,et al. A type system for well-founded recursion , 2004, POPL.
[10] R. Kent Dybvig,et al. Fixing Letrec: A Faithful Yet Efficient Implementation of Scheme's Recursive Binding Construct , 2005, High. Order Symb. Comput..
[11] Don Syme. An Alternative Approach to Initializing Mutually Referential Objects , 2005 .
[12] Don Syme. Initializing Mutually Referential Abstract Objects: The Value Recursion Challenge , 2006, Electron. Notes Theor. Comput. Sci..
[13] Magnus Carlsson,et al. Unrestricted pure call-by-value recursion , 2008, ML '08.
[14] R. Kent Dybvig,et al. Fixing Letrec ( reloaded ) , 2009 .
[15] R. Kent Dybvig,et al. Revised6 Report on the Algorithmic Language Scheme , 2009 .
[16] Delia Kesner,et al. The Structural lambda-Calculus , 2010, CSL.
[17] Matthias Felleisen,et al. The Call-by-need Lambda Calculus, Revisited , 2012, ESOP.
[18] Beniamino Accattoli. Evaluating functions as processes , 2013, TERMGRAPH.
[19] Didier Rémy,et al. Ambivalent Types for Principal Type Inference with GADTs , 2013, APLAS.
[20] Simon L. Peyton Jones,et al. Modular, higher-order cardinality analysis in theory and practice , 2014, POPL 2014.
[21] Oleg Kiselyov. The Design and Implementation of BER MetaOCaml - System Description , 2014, FLOPS.
[22] Alexandra Silva,et al. CoCaml: Functional Programming with Regular Coinductive Types , 2017, Fundam. Informaticae.
[23] Simon Peyton Jones,et al. Theory and practice of demand analysis in Haskell , 2017 .
[24] Gabriel Scherer,et al. Merlin: a language server for OCaml (experience report) , 2018, Proc. ACM Program. Lang..
[25] Tom Hirschowitz,et al. A practical type system for generalized recursion , 2019 .
[26] Jean-Philippe Bernardy,et al. A unified view of modalities in type systems , 2020, Proc. ACM Program. Lang..