Numerical study of cancer cell invasion dynamics using adaptive mesh refinement: the urokinase model

In the present work we investigate the chemotactically and proteolytically driven tissue invasion by cancer cells. The model employed is a system of advection-reaction-diffusion equations that features the role of the serine protease urokinase-type plasminogen activator. The analytical and numerical study of this system constitutes a challenge due to the merging, emerging, and travelling concentrations that the solutions exhibit. Classical numerical methods applied to this system necessitate very fine discretization grids to resolve these dynamics in an accurate way. To reduce the computational cost without sacrificing the accuracy of the solution, we apply adaptive mesh refinement techniques, in particular h-refinement. Extended numerical experiments exhibit that this approach provides with a higher order, stable, and robust numerical method for this system. We elaborate on several mesh refinement criteria and compare the results with the ones in the literature. We prove, for a simpler version of this model, L 1 bounds for the solutions, we study the stability of its conditional steady states, and conclude that it can serve as a test case for further development of mesh refinement techniques for cancer invasion simulations.

[1]  T. Eberlein,et al.  Tumor Biology and Tumor Markers , 2012 .

[2]  P. Armitage,et al.  The Age Distribution of Cancer and a Multi-stage Theory of Carcinogenesis , 1954, British Journal of Cancer.

[3]  Steven F Dowdy,et al.  Regulation of G(1) cell-cycle progression by oncogenes and tumor suppressor genes. , 2002, Current opinion in genetics & development.

[4]  Dariusz Wrzosek,et al.  Global attractor for a chemotaxis model with prevention of overcrowding , 2004 .

[5]  B. Binder,et al.  The somatomedin B domain of vitronectin. Structural requirements for the binding and stabilization of active type 1 plasminogen activator inhibitor. , 1994, The Journal of biological chemistry.

[6]  Mark A. J. Chaplain,et al.  Robust numerical methods for taxis-diffusion-reaction systems: Applications to biomedical problems , 2006, Math. Comput. Model..

[7]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[8]  Steven F. Dowdy,et al.  Regulation of G1 cell-cycle progression by oncogenes and tumor suppressor genes , 2002 .

[9]  D. Loskutoff,et al.  Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin B domain of vitronectin. , 1991, The Journal of biological chemistry.

[10]  Guy S. Salvesen,et al.  SnapShot: Caspases , 2011, Cell.

[11]  John S. Condeelis,et al.  Chemotaxis in cancer , 2011, Nature Reviews Cancer.

[12]  Z. Werb,et al.  Matrix Metalloproteinases: Regulators of the Tumor Microenvironment , 2010, Cell.

[13]  Kevin J. Painter,et al.  Spatio-temporal chaos in a chemotaxis model , 2011 .

[14]  L. G. Stern,et al.  Fractional step methods applied to a chemotaxis model , 2000, Journal of mathematical biology.

[15]  J. C. FISHER,et al.  Multiple-Mutation Theory of Carcinogenesis , 1958, Nature.

[16]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[17]  J. Glazier,et al.  Front Instabilities and Invasiveness of Simulated 3D Avascular Tumors , 2009, PloS one.

[18]  Kevin J Painter,et al.  The impact of adhesion on cellular invasion processes in cancer and development. , 2010, Journal of theoretical biology.

[19]  C. Nordling A New Theory on the Cancer-inducing Mechanism , 1953, British Journal of Cancer.

[20]  A. Anderson,et al.  Front Instabilities and Invasiveness of Simulated Avascular Tumors , 2009, Bulletin of mathematical biology.

[21]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[22]  Mark A. J. Chaplain,et al.  Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation , 2011, Journal of mathematical biology.

[23]  Alexander Kurganov,et al.  Numerical study of two-species chemotaxis models , 2013 .

[24]  A. Marciniak-Czochra,et al.  Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics , 2012 .

[25]  Tak W. Mak,et al.  Pathways of apoptotic and non-apoptotic death in tumour cells , 2004, Nature Reviews Cancer.

[26]  Gabriella Puppo,et al.  Numerical entropy and adaptivity for finite volume schemes , 2011 .

[27]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[28]  A. Wyllie,et al.  Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics , 1972, British Journal of Cancer.

[29]  H. Frieboes,et al.  An integrated computational/experimental model of tumor invasion. , 2006, Cancer research.

[30]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions , 2009 .

[31]  M. Sporn The war on cancer , 1996, The Lancet.

[32]  J. Sherratt,et al.  Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. , 2002, Journal of theoretical biology.

[33]  J. Quigley,et al.  Cell Surface Remodeling by Plasmin: A New Function for an Old Enzyme , 2012, Journal of biomedicine & biotechnology.

[34]  M. Baggiolini Chemokines and Cancer , 1999, Nature Medicine.

[35]  Luigi Preziosi,et al.  Cancer Modelling and Simulation , 2003 .

[36]  S. Rosenberg,et al.  Identification of the urokinase receptor as an adhesion receptor for vitronectin. , 1994, The Journal of biological chemistry.

[37]  D A Lauffenburger,et al.  Transient behavior of a chemotaxis system modelling certain types of tissue inflammation , 1987, Journal of mathematical biology.

[38]  M. Lukácová-Medvidová,et al.  Entropy dissipation of moving mesh adaptation , 2012, 1209.5009.

[39]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[40]  Alf Gerisch,et al.  Operator splitting and approximate factorization for taxis-diffusion-reaction models , 2002 .

[41]  M. Berger,et al.  Analysis of Slope Limiters on Irregular Grids , 2005 .

[42]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[43]  Alexander Kurganov,et al.  ON A CHEMOTAXIS MODEL WITH SATURATED CHEMOTACTIC FLUX , 2012 .

[44]  R. Schreiber,et al.  The immunobiology of cancer immunosurveillance and immunoediting. , 2004, Immunity.

[45]  Nikolaos Sfakianakis,et al.  Adaptive mesh reconstruction for hyperbolic conservation laws with total variation bound , 2012, Math. Comput..

[46]  Mariya Ptashnyk,et al.  BOUNDEDNESS OF SOLUTIONS OF A HAPTOTAXIS MODEL , 2010 .

[47]  Youshan Tao Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source , 2009 .

[48]  Charalambos Makridakis,et al.  ENTROPY CONSERVATIVE SCHEMES AND ADAPTIVE MESH SELECTION FOR HYPERBOLIC CONSERVATION LAWS , 2010 .

[49]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[50]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[51]  R. A. ANDERSONa,et al.  Mathematical Modelling of Tumour Invasion and Metastasis , 2022 .

[52]  Nordling Co A New Theory on the Cancer-inducing Mechanism , 1953 .

[53]  C. Patlak Random walk with persistence and external bias , 1953 .

[54]  Mario Ohlberger,et al.  A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..

[55]  J. Sherratt,et al.  Biological inferences from a mathematical model for malignant invasion. , 1996, Invasion & metastasis.

[56]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. , 2008 .

[57]  Kevin J. Painter,et al.  CONVERGENCE OF A CANCER INVASION MODEL TO A LOGISTIC CHEMOTAXIS MODEL , 2013 .