Long Time Oxidation Study of Ti3SiC2 , Ti3SiC2 / SiC , and Ti3SiC2 / TiC Composites in Air

We report herein on the oxidation kinetics and morphology of the oxide phases that form after long term (up to 1500 h) oxidation in ambient air of fine and coarse-grained samples of Ti 3 SiC 2 , Ti 3 SiC 2 , with 30 vol % TiC and Ti 3 SiC with 30 vol %SiC in the 875-1200°C temperature range. In all cases, the oxidation resulted in a duplex scale, an outer rutile and an inner rutile/ silica layer. At 875°C, and up to at least 100 h, the oxidation kinetics of the Ti 3 SiC 2 /30 vol % TiC samples are parabolic: at 925°C, the oxidation kinetics of the Ti 3 SiC 2 /30 vol % SiC are subparabolic, up to at least 500 h. The oxidation kinetics of all other runs are initially parabolic, but at times >30 h they become linear. The reason for the transition is not entirely clear, but could he due to the buildup of stresses in the external oxide scales. Comparison with previously published results indicate that the rate limiting step, when the oxidation kinetics are parabolic, is most probably the inward diffusion of oxygen and the simultaneous outward diffusion of titanium. The results also strongly suggest that the activation energies for diffusion of oxygen and titanium in rutile are almost identical over at least the 1000-1200°C temperature range.

[1]  S. Kalidindi,et al.  Processing and Mechanical Properties of Ti3SiC2: II, Effect of Grain Size and Deformation Temperature , 2004 .

[2]  M. Barsoum,et al.  Processing and Mechanical Properties of Ti3SiC2: I, Reaction Path and Microstructure Evolution , 2004 .

[3]  S. Wiederhorn,et al.  Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension , 2002 .

[4]  M. Li,et al.  High temperature oxidation behavior of Ti3SiC2-based material in air , 2001 .

[5]  S. Wiederhorn,et al.  Tensile creep of fine grained (3–5 μm) Ti3SiC2 in the 1000–1200°C temperature range , 2001 .

[6]  M. Barsoum,et al.  Oxidation of Ti n + 1AlX n ( n = 1 ­ 3 and X = C , N): II. Experimental Results , 2001 .

[7]  M. Barsoum Oxidation of Ti n + 1AlX n ( n = 1 ­ 3 and X = C , N) I. Model , 2001 .

[8]  Yanchun Zhou,et al.  Oxidation behaviour of Ti3SiC2-based ceramic at 900–1300°C in air , 2001 .

[9]  M. Barsoum,et al.  Reaction of Al with Ti3SiC2 in the 800–1000°C temperature range , 2001 .

[10]  H. Seifert,et al.  Experimental Investigation and Thermodynamic Calculation of the Titanium–Silicon–Carbon System , 2000 .

[11]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[12]  M. Barsoum,et al.  The topotactic transformation of Ti{sub 3}SiC{sub 2} into a partially ordered cubic Ti(C{sub 0.67}Si{sub 0.06}) phase by the diffusion of Si into molten cryolite , 1999 .

[13]  M. Barsoum,et al.  Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2 , 1999 .

[14]  M. Akinc,et al.  Synthesis and high-temperature stability of Ti3SiC2 , 1999 .

[15]  L. Farber transmission electron microscopy study of a low-angle boundary in plastically deformed Ti3SiC2 , 1999 .

[16]  E. A. Payzant,et al.  Thermal properties of Ti3SiC2 , 1999 .

[17]  Z. A. Munir,et al.  Field-activated pressure-assisted combustion synthesis of polycrystalline Ti_3SiC_2 , 1999 .

[18]  M. Barsoum,et al.  Room-temperature ductile carbides , 1999 .

[19]  M. Barsoum,et al.  Diffusion kinetics of the carburization and silicidation of Ti3SiC2 , 1998 .

[20]  M. Barsoum,et al.  Oxidation of Ti3SiC2 in air , 1997 .

[21]  Michel W. Barsoum,et al.  Fundamentals of Ceramics , 1996 .

[22]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[23]  T. Yano,et al.  Synthesis and high temperature mechanical properties of Ti3SiC2/SiC composite , 1995 .

[24]  K. Nickel Multiple Law Modelling for the Oxidation of Advanced Ceramics and a Model-Independent Figure of Merit , 1994 .

[25]  N. Jacobson Corrosion of Silicon-Based Ceramics in Combustion Environments , 1993 .

[26]  J. Lis,et al.  Solid combustion synthesis of Ti3SiC2 , 1989 .

[27]  N. L. Peterson,et al.  Diffusion and point defects in TiO2−x , 1985 .

[28]  J. Marucco Thermogravimetric and electrical study of non-stoichiometric titanium dioxide TiO2−x, between 800 and 1100°C , 1981 .

[29]  M. Kobayashi,et al.  Depth Profile Measurement by Secondary Ion Mass Spectrometry for Determining the Tracer Diffusivity of Oxygen in Rutile , 1979 .

[30]  J. R. Akse,et al.  Diffusion of titanium in slightly reduced rutile , 1978 .

[31]  D. A. Venkatu,et al.  Diffusion of titanium of single crystal rutile , 1970 .

[32]  R. Haul,et al.  Sauerstoff-selbstdiffusion in Rutilkristallen , 1965 .

[33]  J. Yahia Dependence of the Electrical Conductivity and Thermoelectric Power of Pure and Aluminum-Doped Rutile on Equilibrium Oxygen Pressure and Temperature , 1963 .