Production of long-chain hydroxy fatty acids by microbial conversion

[1]  Yujin Cao,et al.  Biotechnological production of eicosapentaenoic acid: From a metabolic engineering point of view , 2012 .

[2]  W. Crosby,et al.  A Review on the Challenges for Increased Production of Castor , 2012 .

[3]  C. Ching,et al.  Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance , 2012, Applied Microbiology and Biotechnology.

[4]  P. Díaz,et al.  Hydroxy-fatty acid production in a Pseudomonas aeruginosa 42A2 PHA synthase mutant generated by directed mutagenesis , 2012, Applied Microbiology and Biotechnology.

[5]  C. Hou,et al.  Production of a novel 9,12-dihydroxy-10(E)-eicosenoic acid from eicosenoic acid by Pseudomonas aeruginosa PR3. , 2011, Journal of agricultural and food chemistry.

[6]  R. Gross,et al.  Polymers from fatty acids: poly(ω-hydroxyl tetradecanoic acid) synthesis and physico-mechanical studies. , 2011, Biomacromolecules.

[7]  Salmiah Ahmad,et al.  Development, characterization and commercial application of palm based dihydroxystearic acid and its derivatives: an overview. , 2011, Journal of oleo science.

[8]  B. Kim,et al.  Production of 7,10-dihydroxy-8(E)-octadecenoic acid from olive oil by Pseudomonas aeruginosa PR3 , 2011, Applied Microbiology and Biotechnology.

[9]  D. Oh,et al.  Conversion of oleic acid to 10-hydroxystearic acid by whole cells of Stenotrophomonas nitritireducens , 2011, Biotechnology Letters.

[10]  J. Bae,et al.  Production of a value-added hydroxy fatty acid, 7,10-dihydroxy-8(E)-octadecenoic acid, from high oleic safflower Oil by Pseudomonas aeruginosa PR3 , 2010 .

[11]  Marta Santos,et al.  Production of Chiral (R)-3-Hydroxyoctanoic Acid Monomers, Catalyzed by Pseudomonas fluorescens GK13 Poly(3-Hydroxyoctanoic Acid) Depolymerase , 2010, Applied and Environmental Microbiology.

[12]  M. Zinn,et al.  Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives , 2010, Applied Microbiology and Biotechnology.

[13]  Olga K. Kamneva,et al.  Myosin Cross-reactive Antigen of Streptococcus pyogenes M49 Encodes a Fatty Acid Double Bond Hydratase That Plays a Role in Oleic Acid Detoxification and Bacterial Virulence , 2010, The Journal of Biological Chemistry.

[14]  M. Hamberg,et al.  Biochemical Characterization of the Oxygenation of Unsaturated Fatty Acids by the Dioxygenase and Hydroperoxide Isomerase of Pseudomonas aeruginosa 42A2 , 2010, The Journal of Biological Chemistry.

[15]  L. Schreiber,et al.  Cytochrome P450 Family Member CYP704B2 Catalyzes the ω -Hydroxylation of Fatty Acids and Is Required for Anther Cutin Biosynthesis and Pollen Exine Formation in Rice[W][OA] , 2010, Plant Cell.

[16]  M. Xian,et al.  Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes , 2010, Applied Microbiology and Biotechnology.

[17]  B. Kim,et al.  Production of oxygenated fatty acids from vegetable oils by Flavobacterium sp. strain DS5. , 2009, New biotechnology.

[18]  P. Verhaert,et al.  Oleate Hydratase Catalyzes the Hydration of a Nonactivated Carbon-Carbon Bond , 2009, Journal of bacteriology.

[19]  Qian-Qian Liu,et al.  Microbial production of 3-hydroxydodecanoic acid by pha operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene , 2009, Applied Microbiology and Biotechnology.

[20]  H. Shoun,et al.  Production of hydroxy-fatty acid derivatives from waste oil by Escherichia coli cells producing fungal cytochrome P450foxy , 2008, Applied Microbiology and Biotechnology.

[21]  R. Bajpai,et al.  Screening for ω−1-hydroxy fatty acid over-producing mutants for bioconversion of oleic acid by combining general mutagenesis and specific selection , 2008 .

[22]  G. Naharro,et al.  Poly‐3‐hydroxyalkanoate synthases from Pseudomonas putida U: substrate specificity and ultrastructural studies , 2007, Microbial biotechnology.

[23]  D. Hildebrand,et al.  Comparison of Bacillus monooxygenase genes for unique fatty acid production. , 2008, Progress in lipid research.

[24]  D. Haines,et al.  Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus. , 2007, Archives of biochemistry and biophysics.

[25]  Matthias Dietrich,et al.  Cytochrome P450 monooxygenase from Clostridium acetobutylicum: a new alpha-fatty acid hydroxylase. , 2007, Biochemical and biophysical research communications.

[26]  G. Naharro,et al.  Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. , 2007, Environmental microbiology.

[27]  M. A. Prieto,et al.  Biochemical Evidence That phaZ Gene Encodes a Specific Intracellular Medium Chain Length Polyhydroxyalkanoate Depolymerase in Pseudomonas putida KT2442 , 2007, Journal of Biological Chemistry.

[28]  S. Kang,et al.  Production of 7, 10-dihydroxy-8(E)-octadecenoic acid from triolein via lipase induction by Pseudomonas aeruginosa PR3 , 2007, Applied Microbiology and Biotechnology.

[29]  H. Imaishi,et al.  Molecular Cloning of CYP76B9, a Cytochrome P450 from Petunia hybrida, Catalyzing the ω-Hydroxylation of Capric Acid and Lauric Acid , 2007, Bioscience, biotechnology, and biochemistry.

[30]  H. Kim,et al.  Production of 10,12-dihydroxy-8(E)-octadecenoic acid, an intermediate in the conversion of ricinoleic acid to 7,10,12 trihydroxy-8(E)-octadecenoic acid by Pseudomonas aeruginosa PR3 , 2007 .

[31]  T. Egli,et al.  Efficient production of (R)-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification. , 2007, Biomacromolecules.

[32]  L. Wallen,et al.  Stereospecific hydration of unsaturated fatty acids by bacteria , 1971, Lipids.

[33]  L. Morris Fatty acid composition ofClaviceps species. Occurrence of (+)-threo-9, 10-dihydroxystearic acid , 1968, Lipids.

[34]  A. Rooney,et al.  Evaluation of microbial strains for linoleic acid hydroxylation and reclassification of strain ALA2 , 2005, Antonie van Leeuwenhoek.

[35]  C. Hou Effect of environmental factors on the production of oxygenated unsaturated fatty acids from linoleic acids by Bacillus megaterium ALA2 , 2005, Applied Microbiology and Biotechnology.

[36]  M. Bagby,et al.  10-Hydroxy-8(Z)-octadecenoic acid, an intermediate in the bioconversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid , 1992, Journal of Industrial Microbiology.

[37]  M. Bagby,et al.  Production of a new compound, 7,10-dihydroxy-8-(E)-octadecenoic acid from oleic acid byPseudomonas sp. PR3 , 1991, Journal of Industrial Microbiology.

[38]  G. Naharro,et al.  Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida , 2005, Applied Microbiology and Biotechnology.

[39]  M. Budde,et al.  Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis , 2004, Applied Microbiology and Biotechnology.

[40]  G. Knothe,et al.  Production and properties of 7,10,12‐trihydroxy‐8(E)‐octadecenoic acid from ricinoleic acid conversion by Pseudomonas aeruginosa , 2004 .

[41]  C. W. Hesseltine,et al.  Microbial conversion of oleic acid to 10-hydroxystearic acid , 1989, Applied Microbiology and Biotechnology.

[42]  D. White,et al.  The budding bacteria, Pirellula and Planctomyces, with atypical 16S rRNA and absence of peptidoglycan, show eubacterial phospholipids and uniquely high proportions of long chain beta-hydroxy fatty acids in the lipopolysaccharide lipid A , 2004, Archives of Microbiology.

[43]  G. Naharro,et al.  Bioplastics from microorganisms. , 2003, Current opinion in microbiology.

[44]  E. Ktmunose Enzymatic h-oxidation of Fatty Acids , 2003 .

[45]  Y. Jang,et al.  Effect of metal ions on the production of isomeric 9,10,13 (9,12,13)-trihydroxy-11E (10E)-octadecenoic acid from linoleic acid by Pseudomonas aeruginosa PR3 , 2002 .

[46]  C. Hou,et al.  Biosynthetic pathway of diepoxy bicyclic FA from linoleic acid by Clavibacter sp. ALA2 , 2002 .

[47]  T. Kuo,et al.  Microbiological Conversions of Fatty Acids to Value-Added Products , 2002 .

[48]  A. Steinbüchel,et al.  Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis inEscherichia coli , 2001, Applied and Environmental Microbiology.

[49]  T. Kuo,et al.  Production of a Novel Compound, 7,10,12-Trihydroxy-8(E)-Octadecenoic Acid from Ricinoleic Acid by Pseudomonas aeruginosa PR3 , 2001, Current Microbiology.

[50]  G. Naharro,et al.  Two different pathways are involved in the β‐oxidation of n‐alkanoic and n‐phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications , 2001, Molecular microbiology.

[51]  H. Gardner,et al.  Production of isomeric 9,10,13 (9,12,13)-trihydroxy-11E (10E)-octadecenoic acid from linoleic acid by Pseudomonas aeruginosa PR3 , 2000, Journal of Industrial Microbiology and Biotechnology.

[52]  T. Kuo,et al.  Production of Hydroxy Fatty Acids by Biocatalysis , 2000 .

[53]  T. Kuo,et al.  Production of 10,12-dihydroxy-8(E)-octadecenoic acid, an intermediate in the conversion of ricinoleic acid to 7,10,12-trihydroxy-8(E)-octadecenoic acid by Pseudomonas aeruginosa PR3 , 2000, Journal of Industrial Microbiology and Biotechnology.

[54]  T. Kuo,et al.  Production of 10-Ketostearic Acid and 10-Hydroxystearic Acid by Strains of Sphingobacterium thalpophilum Isolated from Composted Manure , 2000, Current Microbiology.

[55]  H. Gardner,et al.  10(S)-Hydroxy-8(E)-octadecenoic acid, an intermediate in the conversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid , 2000 .

[56]  S. M. Barrett,et al.  FATTY ACIDS AND HYDROXY FATTY ACIDS IN THREE SPECIES OF FRESHWATER EUSTIGMATOPHYTES , 1999 .

[57]  G. Knothe,et al.  Recent Developments in the Synthesis of Fatty Acid Derivatives , 1999 .

[58]  N. Fujiwara,et al.  Characterization of the ybdT gene product of Bacillus subtilis: Novel fatty acid β-hydroxylating cytochrome P450 , 1999, Lipids.

[59]  T. Poulos,et al.  Structure of a cytochrome P450-redox partner electron-transfer complex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Wubbolts,et al.  Biocatalyst Engineering by Assembly of Fatty Acid Transport and Oxidation Activities for In Vivo Application of Cytochrome P-450BM-3 Monooxygenase , 1998, Applied and Environmental Microbiology.

[61]  T. Kuo,et al.  Fatty acid bioconversions by Pseudomonas aeruginosa PR3 , 1998 .

[62]  E. Kusunose,et al.  Further characterization of hydrogen peroxide-dependent fatty acid alpha-hydroxylase from Sphingomonas paucimobilis. , 1998, Journal of biochemistry.

[63]  O. Gotoh,et al.  Molecular Cloning and Expression of Fatty Acid α-Hydroxylase from Sphingomonas paucimobilis * , 1997, The Journal of Biological Chemistry.

[64]  T. Poulos,et al.  The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid , 1997, Nature Structural Biology.

[65]  C. Hou A novel compound, 12,13,17-trihydroxy-9(Z)-Octadecenoic acid, from linoleic acid by a new microbial isolateClavibacter sp. ALA2 , 1996 .

[66]  A. Botha,et al.  Hydroxy long-chain fatty acids in fungi , 1994, World journal of microbiology & biotechnology.

[67]  I. Yano,et al.  Separation and partial characterization of soluble fatty acid alpha-hydroxylase from Sphingomonas paucimobilus. , 1994, Biochemical and biophysical research communications.

[68]  K. Soda,et al.  Biotransformation of Oleic Acid by Micrococcus luteus Cells , 1994 .

[69]  K. Soda,et al.  Biotransformation of oleic acid by Alcaligenes sp. 5-18, a bacterium tolerant to high concentrations of oleic acid. , 1994 .

[70]  C. Rock,et al.  Regulation of fatty acid biosynthesis in Escherichia coli. , 1993, Microbiological reviews.

[71]  J Deisenhofer,et al.  Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. , 1993, Science.

[72]  J. Rosazza,et al.  Microbial oxidation of oleic acid , 1992, Applied and environmental microbiology.

[73]  M. Bagby,et al.  Microbial conversion of linoleic and linolenic acids to unsaturated hydroxy fatty acids , 1992 .

[74]  M. Bagby,et al.  Production of 15-, 16- and 17-hydroxy-9-octadecenoic acids by bioconversion of oleic acid withBacillus pumilus , 1992 .

[75]  I. D. Brodowsky,et al.  Metabolism of 18:2(n - 6), 18:3(n - 3), 20:4(n - 6) and 20:5(n - 3) by the fungus Gaeumannomyces graminis: identification of metabolites formed by 8-hydroxylation and by w2 and w3 oxygenation. , 1992, Biochimica et biophysica acta.

[76]  C. Raetz,et al.  Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. , 1990, The Journal of biological chemistry.

[77]  A. Fulco,et al.  Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. , 1989, The Journal of biological chemistry.

[78]  T. Kondo,et al.  An antifungal compound, 9,12,13-trihydroxy-(E)-10-octadecenoic acid, from Colocasia antiquorum inoculated with Ceratocystis fimbriata , 1989 .

[79]  J. V. Prabhakar,et al.  Isolation of 9,10-Dihydroxystearic acid from sal (Shorea robusta) fat , 1987 .

[80]  F. Pearson,et al.  Establishment of beta-hydroxy fatty acids as chemical marker molecules for bacterial endotoxin by gas chromatography-mass spectrometry , 1986, Applied and environmental microbiology.

[81]  W. D. Nunn A molecular view of fatty acid catabolism in Escherichia coli. , 1986, Microbiological reviews.

[82]  M. Claeys,et al.  Isolation and identification of two isomeric trihydroxy octadecenoic acids with prostaglandin E-like activity from onion bulbs (Allium cepa). , 1985, Prostaglandins.

[83]  A. Fulco,et al.  Epoxidation of unsaturated fatty acids by a soluble cytochrome P-450-dependent system from Bacillus megaterium. , 1981, The Journal of biological chemistry.

[84]  C. Kurtzman,et al.  Formation of extracellular C14-C18 2-D-hydroxy fatty acids by species of Saccharomycopsis. , 1973, Applied microbiology.

[85]  G. Schroepfer,et al.  Stereospecific hydration of cis- and trans-9,10-epoxyoctadecanoic acids. , 1970, The Journal of biological chemistry.

[86]  D. B. Scott,et al.  2-D-Hydroxyhexadecanoic acid: a metabolic product of the yeast Hansenulasydowiorum , 1970 .

[87]  I. Yano,et al.  2-hydroxy fatty acid-containing phospholipid of Arthrobacter simplex. , 1970, Biochimica et biophysica acta.

[88]  L. J. Wickerham,et al.  3-D-Hydroxypalmitic acid: a metabolic product of the yeast NRRL Y-6954 , 1968 .

[89]  A. T. James,et al.  The biosynthesis of ricinoleic acid by Claviceps purpurea. , 1966, The Biochemical journal.

[90]  M. J. Coon,et al.  ENZYMATIC OMEGA-OXIDATION OF FATTY ACIDS. I. PRODUCTS OF OCTANOATE, DECONATE, AND LAURATE OXIDATION. , 1964, The Journal of biological chemistry.

[91]  R. G. Benedict,et al.  The microbiological production of 10-hydroxystearic acid from oleic acid. , 1962, Archives of biochemistry and biophysics.