High end complexity

Despite the general recognition of complexity as an important concept and decades of work, very little progress has been made in the attempt to define complexity. It is suggested that this is due to the fact that the definition of complex behaviour is itself complex, forming a scale from the simple to the more and more complex. Those systems at the high end of the scale are not at present well modelled, and reasons why this might be the case are presented. The possibility that quantum theories may be able to model such high end complexity is investigated.

[1]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[2]  R. Landauer,et al.  Thinking in Complexity: The Complex Dynamics of Matter, Mind, and Mankind , 1995 .

[3]  Gregory J. Chaitin,et al.  Information, Randomness and Incompleteness , 1987 .

[4]  Dominique Chu,et al.  Theories of complexity , 2003, Complex..

[5]  George Kampis,et al.  The Inside and Outside Views of Life , 1995, ECAL.

[6]  K. Kitto Chapter 9 Gauging ALife: Emerging Complex Systems , 2005, Recent Advances in Artificial Life.

[7]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[8]  Diederik Aerts,et al.  Example of a macroscopical classical situation that violates Bell inequalities , 1982 .

[9]  Dawn R. Gilpin,et al.  Theories of Complexity , 2008 .

[10]  Lars Löfgren,et al.  SHADOWS OF LANGUAGE IN PHYSICS AND CYBERNETICS , 1996 .

[11]  H. Fröhlich,et al.  Biological coherence and response to external stimuli , 1988 .

[12]  Peter Bruza,et al.  Quantum Logic of Semantic Space: An Exploratory Investigation of Context Effects in Practical Reasoning , 2005, We Will Show Them!.

[13]  F. Laloë,et al.  Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems , 2001, quant-ph/0209123.

[14]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[15]  F. Sontag,et al.  Wholeness and the Implicate Order , 1983 .

[16]  Michael Silberstein,et al.  The Search for Ontological Emergence , 1999 .

[17]  D. Bohm,et al.  Wholeness and the Implicate Order , 1981 .

[18]  H H Pattee,et al.  The physics of symbols: bridging the epistemic cut. , 2001, Bio Systems.

[19]  Diederik Aerts,et al.  Contextualizing concepts using a mathematical generalization of the quantum formalism , 2002, J. Exp. Theor. Artif. Intell..

[20]  Lars Löfgren,et al.  Unifying Foundations – to be Seen in the Phenomenon of Language , 2004 .

[21]  Robert N. Brandon,et al.  Adaptation and Environment , 1995 .

[22]  Per Bak,et al.  How Nature Works , 1996 .

[23]  Hiroomi Umezawa,et al.  Advanced Field Theory: Micro, Macro, and Thermal Physics , 1993 .

[24]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[25]  Sunny Y. Auyang,et al.  Foundations of Complex-system Theories , 1998 .

[26]  R E Michod,et al.  Ecological genetics. , 1981, Science.

[27]  John Horgan,et al.  From Complexity to Perplexity , 1995 .

[28]  R. O'Neill A Hierarchical Concept of Ecosystems. , 1986 .

[29]  R. B. Root The Niche Exploitation Pattern of the Blue‐Gray Gnatcatcher , 1967 .

[30]  Bruce Edmonds,et al.  Syntactic Measures of Complexity , 1999 .

[31]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[32]  Diederik Aerts,et al.  A theory of concepts and their combinations I: The structure of the sets of contexts and properties , 2005 .

[33]  Alan D. Sokal,et al.  Transgressing the Boundaries: Toward a Transformative Hermeneutics of Quantum Gravity , 1996 .

[34]  Michio Kaku,et al.  Quantum Field Theory: A Modern Introduction , 1993 .

[35]  G. Vitiello My double unveiled , 2001 .

[36]  Kirsty Kitto,et al.  MODELLING AND GENERATING COMPLEX EMERGENT BEHAVIOUR , 2006 .

[37]  Peter A. Corning,et al.  The re-emergence of "emergence": A venerable concept in search of a theory , 2002, Complex..

[38]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[39]  S. Salthe Evolving Hierarchical Systems: Their Structure and Representation , 1985 .

[40]  Lars Löfgren,et al.  COMPLEXITY OF DESCRIPTIONS OF SYSTEMS: A FOUNDATIONAL STUDY , 1977 .

[41]  H. Primas Chemistry, Quantum Mechanics and Reductionism , 1981 .

[42]  Kirsty Kitto,et al.  Process physics: Quantum theories as models of complexity , 2008 .

[43]  Alfred Inselberg Visualization of concept formation and learning , 2005 .

[44]  Abner Shimony,et al.  Chemistry, Quantum Mechanics and Reductionism: Perspectives in Theoretical Chemistry , 1981 .

[45]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[46]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[47]  Jaegwon Kim,et al.  Emergence or Reduction?: Essays on the Prospects of Nonreductive Physicalism , 1992 .

[48]  B. Baaquie Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates , 2004 .

[49]  R. May Food webs. , 1983, Science.

[50]  Peter H. Richter Information and Self-organization: A Macroscopic Approach to Complex Systems, Hermann Haken. Springer, New York (1988), $59.50 (cloth), 196 pp , 1991 .

[51]  P. Cilliers,et al.  Complexity and post-modernism: understanding complex systems , 1999 .

[52]  L. Apostel Towards a New Democracy : Consensus Through Quantum Parliament , 2005 .

[53]  Robert Rosen,et al.  Essays on Life Itself , 1999 .

[54]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[55]  Richard Dawkins,et al.  Postmodernism disrobed , 1998, Nature.

[56]  Bertrand Delamotte,et al.  A Hint of renormalization , 2002, hep-th/0212049.

[57]  Ilya Prigogine,et al.  From Being To Becoming , 1980 .

[58]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[59]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[60]  A. Davydov,et al.  Solitons in molecular systems , 1979 .

[61]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[62]  A. Zajonc,et al.  The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics , 1997 .

[63]  H. Fröhlich,et al.  Theoretical Physics and Biology , 1988 .

[64]  Robert Rosen,et al.  Structural stability and morphogenesis , 1977 .

[65]  M. Bedau Weak Emergence * , 1997 .

[66]  Carlo Rovelli,et al.  Loop Quantum Gravity , 1997, Living reviews in relativity.

[67]  A. Sokal,et al.  Revelation: A Physicist Experiments with Cultural Studies , 2000 .

[68]  Kirsty Kitto,et al.  Dynamical hierarchies in fundamental physics , 2002 .

[69]  M. West-Eberhard Phenotypic Plasticity and the Origins of Diversity , 1989 .

[70]  Carlo Rovelli,et al.  Loop Quantum Gravity , 2008, Living Reviews in Relativity.

[71]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[72]  Robert E. Marshak,et al.  CONCEPTUAL FOUNDATIONS OF MODERN PARTICLE PHYSICS , 1993 .

[73]  Howard H. Pattee,et al.  Simulations, Realizations, and Theories of Life , 1987, ALIFE.

[74]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[75]  John Maynard Smith,et al.  The Theory of Evolution , 1958 .

[76]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[77]  John L. Casti,et al.  On System Complexity: Identification, Measurement, and Management , 1986 .

[78]  H. S. Allen The Quantum Theory , 1928, Nature.

[79]  廣松 毅 International Journal of General Systems : 抄録雑誌の概要 , 1987 .

[80]  R. Rosen Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life , 1991 .